www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Englisch
  Status Grammatik
  Status Lektüre
  Status Korrekturlesen
  Status Übersetzung
  Status Sonstiges (Englisch)

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Komplexe Analysis" - Polynom in C->C Nullstellen
Polynom in C->C Nullstellen < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Polynom in C->C Nullstellen: Polynome Nullstellen Komplex
Status: (Frage) beantwortet Status 
Datum: 12:50 So 25.11.2007
Autor: IHomerI

Aufgabe
Gegeben sei das Polynom P: [mm] \IC \to \IC [/mm] definiert durch

                              P(z) := [mm] 2z^5-z^4+10z^3-5z^2+8z-4 [/mm]
a) Berechnen Sie P(0) und  P(1)
b) Beweisen Sie, dass P mindesten eine reelle Nullstelle hat.
c) Berechnen Sie P(i), P(2i) und finden Sie alle Nullstellen von P.




Und zwar ist meine Frage folgende, könnte ich Aufgabe b beantworten, indem ich sage: Ein ungerades Polynom hat immer eine relle Nullstelle, da falls eine koplexe zahl eine NST ist auch ihre komplex konjugierte form eine NST ist und somit ja immer gerade exponenten entstehen. Deshalb müsste ja [mm] Z^5 [/mm] mind. eine reelle NST haben oder ?

Und zu C) ist meine Frage:  Ich soll ja alle NSTs bestimmen also sozusagen z1,z2,z3,z4,z5 so bei i weis ich, dass das eine NST ist und somit auch -i ne? wenn ich jetzt den rest der NSTs haben will kann ich ja polynomdivi machen und danach pq formel, dann hab ich ja schon 2 weitere evtl. aber wie bekomm ich denn die eine reelle vorneweg?

Wär nett wenn ihr mir helfen könntet.

lg Homer

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Polynom in C->C Nullstellen: Antwort
Status: (Antwort) fertig Status 
Datum: 13:04 So 25.11.2007
Autor: Somebody


> Gegeben sei das Polynom P: [mm]\IC \to \IC[/mm] definiert durch
>  
> P(z) := [mm]2z^5-z^4+10z^3-5z^2+8z-4[/mm]
>  a) Berechnen Sie P(0) und  P(1)
>  b) Beweisen Sie, dass P mindesten eine reelle Nullstelle
> hat.
>  c) Berechnen Sie P(i), P(2i) und finden Sie alle
> Nullstellen von P.
>  
>
>
> Und zwar ist meine Frage folgende, könnte ich Aufgabe b
> beantworten, indem ich sage: Ein ungerades Polynom hat
> immer eine relle Nullstelle,

Richtig: und zwar wegen des Zwischenwertsatzes. Der folgende Zusatz ist daher überhaupt nicht nötig:

> da falls eine komplexe zahl
> eine NST ist auch ihre komplex konjugierte form eine NST
> ist und somit ja immer gerade exponenten entstehen. Deshalb
> müsste ja [mm]Z^5[/mm] mind. eine reelle NST haben oder ?
>  
> Und zu C) ist meine Frage:  Ich soll ja alle NSTs bestimmen
> also sozusagen z1,z2,z3,z4,z5 so bei i weis ich, dass das
> eine NST ist und somit auch -i ne? wenn ich jetzt den rest
> der NSTs haben will kann ich ja polynomdivi machen und
> danach pq formel, dann hab ich ja schon 2 weitere evtl.
> aber wie bekomm ich denn die eine reelle vorneweg?

Wenn Du zuerst einmal, wie von der Aufgabenstellung nicht ohne Grund ausdrücklich verlangt, die Werte des Polynoms an den Stellen [mm] $\mathrm{i}$ [/mm] und [mm] $2\mathrm{i}$ [/mm] berechnet hast, dann hast Du, weil die Koeffizienten reell und daher zu jeder komplexen Nullstelle auch deren Konjugierte eine Nullstelle ist, bereits vier von insgesamt fünf Nullstellen dieses Polynoms gefunden. Um rationale reelle Nullstelle zu finden (und wir wissen, aufgrund unserer Kenntnis der restlichen 4 Nullstellen, dass die reelle Nullstelle rational sein muss) könntest Du zwar im Prinzip die $z$ von der Form [mm] $z=\frac{p}{q}$ [/mm] durchprobieren (wobei $p$ ein ganzzahliger Teiler von $-4$ und $q$ ein natürlicher Teiler von $2$). Du kannst aber auch mittels Polynomdivision diejenigen Faktorpolynome, die Du bereits kennst, abspalten: es wird ein lineares Polynom übrig bleiben, dessen reelle Nullstelle problemlos abzulesen sein wird.


Bezug
                
Bezug
Polynom in C->C Nullstellen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:49 So 25.11.2007
Autor: IHomerI

Dankeee komisch hatte das mit 2i 2x gerechnet und es kamimmer was anderes raus als 0....lol jetzt hab ich nochmal gemacht und es ist 0 supiiii dann ist mir der rest auch klar.

thx nochmal und nen schönen Abend

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.englischraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]