www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Englisch
  Status Grammatik
  Status Lektüre
  Status Korrekturlesen
  Status Übersetzung
  Status Sonstiges (Englisch)

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gruppe, Ring, Körper" - Polynomring
Polynomring < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Polynomring: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:53 Mo 26.11.2018
Autor: Tobikall

Aufgabe
Es sei R ein kommutativer Ring. Beweisen Sie:

Die Menge [mm] R^{N_0} [/mm] ={a: [mm] N_0 [/mm] → R: [mm] {n\in N_0: a(n) \not= 0} [/mm] ist endlich} versehen mit den Verknüpfungen
(a+b)(n)= α(n)+β (n) und [mm] (a*b)(n)=\summe_{K=0}^{n}a(k)b [/mm] (n−k)
ist ein kommutativer Ring (sog. Polynomring über R).

Wie kann ich die (mir bekannten Axiome) hier zeigen:

ist z.B. für die Kommutativität richtig:

(a+b)(n)= a(n)+b(n)=b(n)+a(n) =(b+a)(n) ???
Oder muss man hier mit dem Summenzeichen für n in der Formel arbeiten?

        
Bezug
Polynomring: Antwort
Status: (Antwort) fertig Status 
Datum: 15:35 Mo 26.11.2018
Autor: fred97


> Es sei R ein kommutativer Ring. Beweisen Sie:
>  
> Die Menge [mm]R^{N_0}[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

={a: [mm]N_0[/mm] → R: [mm]{n\in N_0: a(n) \not= 0}[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)




> ist endlich}

Das soll wohl so lauten:


$\IR^{\IN_0}=\{a: \IN_0 \to \IR: \{n \in \IN_0:a(n) \ne 0 \quad ist \quad endlich  \}\}$


>  versehen mit den Verknüpfungen
>  (a+b)(n)= α(n)+β (n)

Du meinst sicher $(a+b)(n)=a(n)+b(n)$.



>  und [mm](a*b)(n)=\summe_{K=0}^{n}a(k)b[/mm]
> (n−k)


Und hier: [mm] $(a*b)(n)=\summe_{k=0}^{n}a(k)b(n-k)$ [/mm]


>  ist ein kommutativer Ring (sog. Polynomring über R).
>  Wie kann ich die (mir bekannten Axiome) hier zeigen:
>  
> ist z.B. für die Kommutativität richtig:
>  
> (a+b)(n)= a(n)+b(n)=b(n)+a(n) =(b+a)(n) ???


Ja, damit ist für $a,b [mm] \in \IR^{\IN_0}$ [/mm] gezeigt:

   $a+b=b+a$.



>  Oder muss man hier mit dem Summenzeichen für n in der
> Formel arbeiten?


Das Summenzeichen kommt ins Spiel, wenn Produkte $a*b$ vorkommen, also z.B. beim Distributivgesetz.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.englischraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]