Positiv definite Matrizen < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 09:48 So 25.10.2009 | Autor: | daTidus |
Aufgabe | Die Menge S der positiv definiten Matrizen ist eine offene Teilmenge des Vektorraums [mm] S_n [/mm] der symmetrischen n [mm] \times [/mm] n - Matrizen |
Guten Morgen,
man soll diese Aufgabe mit Hilfe des Hurwitz-Kriteriums lösen, welches besagt, dass eine symmetrische Matrix A genau dann positiv definit ist, wenn alle Hauptminoren von A positiv sind. Leider weiß ich nicht, wie mir das hier weiterhilft.
Gruß daTidus
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 10:16 So 25.10.2009 | Autor: | felixf |
Hallo daTidus!
> Die Menge S der positiv definiten Matrizen ist eine offene
> Teilmenge des Vektorraums [mm]S_n[/mm] der symmetrischen n [mm]\times[/mm] n
> - Matrizen
>
> man soll diese Aufgabe mit Hilfe des Hurwitz-Kriteriums
> lösen, welches besagt, dass eine symmetrische Matrix A
> genau dann positiv definit ist, wenn alle Hauptminoren von
> A positiv sind. Leider weiß ich nicht, wie mir das hier
> weiterhilft.
Mit dem Kriterium "alle Eigenwerte sind positiv" geht's einfacher. Aber hiermit geht's auch.
Dazu beachte: die Determinante ist eine stetige Abbildung. Damit sind auch die Hauptminorenabbildungen [mm] $H_1, \dots, H_n [/mm] : [mm] S_n \to \IR$, [/mm] die einer Matrix die Hauptminoren zuordnet, stetig. Damit ist auch die Abbildung $H = [mm] (H_1, \dots, H_n) [/mm] : [mm] S_n \to \IR^n$ [/mm] stetig.
Jetzt benutze die Stetigkeit von $H$ und formuliere das Hurwitz-Kriterium mit Hilfe von $H$. Dann brauchst du nur noch eine einfache Teilmenge des [mm] $\IR^n$ [/mm] auf Offenheit zu ueberpruefen.
LG Felix
|
|
|
|