Potenzfunktionen < Klassen 8-10 < Schule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 17:51 Mo 11.04.2005 | Autor: | der_puma |
hi,
ich hab folgende frage: bei potenzfunktionen mit geraden exponenten gibt es eine bestimmte menge an "x",die man einsetzen kann und wodurch f dafür streng monton fallen wird oder streng monoton steigend wird.
wie kann man nun diese menge an "x" bestimmen für die f streng mononton fallend oder steigend wird? ( zb. x wird abgebildet auf [mm] x^6 [/mm] oder x wird abgebildet auf [mm] (x-2)^4+1)
[/mm]
freundlicher gruß
christopher
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 18:10 Mo 11.04.2005 | Autor: | Max |
> hi,
Hallo Christopher,
> ich hab folgende frage: bei potenzfunktionen mit geraden
> exponenten gibt es eine bestimmte menge an "x",die man
> einsetzen kann und wodurch f dafür streng monton fallen
> wird oder streng monoton steigend wird.
Etwas holperig formuliert *g* Ich würde sagen, es gibt immer ein Intervall, auf dem eine Potenzfunktion mit geraden Exponenten streng monoton steigend ist.
> wie kann man nun diese menge an "x" bestimmen für die f
> streng mononton fallend oder steigend wird? ( zb. x wird
> abgebildet auf [mm]x^6[/mm] oder x wird abgebildet auf [mm](x-2)^4+1)[/mm]
Nun gut, wenn du den Scheitelpunkt deiner Potenzfunktion kennst fällt es dir leichter diese Frage zu beantworten. ZB hat [mm] $f(x)=x^6$ [/mm] den Scheitelpunkt $S(0|0)$, daher ist $f$ für alle $x>0$ streng montom steigend*. Entsprechend ist $f$ für $x<0$ streng monoton fallend.
Die Funktion [mm] $g(x)=(x-2)^4+1$ [/mm] geht ja aus der Funktion [mm] $h(x)=x^4$ [/mm] mit Scheitelpunkt $S(0|0)$ hervor, indem man $h$ um 2 nach rechts und einen nach oben verschiebt, also hat $g$ den Scheitelpunkt $S(2|1)$ und ist für $x>2$ streng monoton steigend und für $x<2$ streng monoton fallend.
Manchmal wird eine Funktion auch mit $-1$ gestreckt, dann tauscht in den entsprechenden Intervallen streng monoton steigend mit streng monton fallend, zB [mm] $f(x)=-x^2$ [/mm] ist für $x>0$ streng monoton fallend und für $x<0$ streng monton steigend.
*: Sei [mm] $f(x)=x^n$. [/mm] Behauptung: Dann ist $f$ auf $(0; [mm] \infyt)$ [/mm] streng monton steigend.
$x>y [mm] \Rightarrow x^n>y^n \Rightarrow [/mm] f(x)>f(y) [mm] \Rightarrow [/mm] f [mm] \text{ ist streng monoton steigend}$
[/mm]
Gruß Max
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 21:44 Mo 11.04.2005 | Autor: | der_puma |
> > hi,
> Hallo Christopher,
>
>
>
> > ich hab folgende frage: bei potenzfunktionen mit geraden
> > exponenten gibt es eine bestimmte menge an "x",die man
> > einsetzen kann und wodurch f dafür streng monton fallen
> > wird oder streng monoton steigend wird.
> Etwas holperig formuliert *g* Ich würde sagen, es gibt
> immer ein Intervall, auf dem eine Potenzfunktion mit
> geraden Exponenten streng monoton steigend ist.
>
>
> > wie kann man nun diese menge an "x" bestimmen für die f
> > streng mononton fallend oder steigend wird? ( zb. x wird
> > abgebildet auf [mm]x^6[/mm] oder x wird abgebildet auf [mm](x-2)^4+1)[/mm]
>
> Nun gut, wenn du den Scheitelpunkt deiner Potenzfunktion
> kennst fällt es dir leichter diese Frage zu beantworten. ZB
> hat [mm]f(x)=x^6[/mm] den Scheitelpunkt [mm]S(0|0)[/mm], daher ist [mm]f[/mm] für alle
> [mm]x>0[/mm] streng montom steigend*. Entsprechend ist [mm]f[/mm] für [mm]x<0[/mm]
> streng monoton fallend.
>
> Die Funktion [mm]g(x)=(x-2)^4+1[/mm] geht ja aus der Funktion
> [mm]h(x)=x^4[/mm] mit Scheitelpunkt [mm]S(0|0)[/mm] hervor, indem man [mm]h[/mm] um 2
> nach rechts und einen nach oben verschiebt, also hat [mm]g[/mm] den
> Scheitelpunkt [mm]S(2|1)[/mm] und ist für [mm]x>2[/mm] streng monoton
> steigend und für [mm]x<2[/mm] streng monoton fallend.
>
> Manchmal wird eine Funktion auch mit [mm]-1[/mm] gestreckt, dann
> tauscht in den entsprechenden Intervallen streng monoton
> steigend mit streng monton fallend, zB [mm]f(x)=-x^2[/mm] ist für
> [mm]x>0[/mm] streng monoton fallend und für [mm]x<0[/mm] streng monton
> steigend.
>
> *: Sei [mm]f(x)=x^n[/mm]. Behauptung: Dann ist [mm]f[/mm] auf [mm](0; \infyt)[/mm]
> streng monton steigend.
>
> [mm]x>y \Rightarrow x^n>y^n \Rightarrow f(x)>f(y) \Rightarrow f \text{ ist streng monoton steigend}[/mm]
>
> Gruß Max
>
hi,
also schon mal vielen dank für die antwort, so was hab ich mir auch gedacht,was mich nur irritiert ist, dass in unserrem mathebuch etwas anderes steht
[mm]g(x)=x^4-17[/mm] das wird bei x < 0 monoton fallend und bei x größer gleich 0 monoton steigend ( sorry für schriebweise)
warum denn bei größer gleich null un nicht nur bei größer null????
gruß
christopher
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 21:59 Mo 11.04.2005 | Autor: | Max |
Hi Christopher,
ich habe bisher immer [mm] $\le$ [/mm] oder [mm] $\ge$ [/mm] weggelassen, weil man theoretisch in beiden Fällen die Null hinzunehmen kann! Es wäre also immer auch [mm] $x\le0$ [/mm] und [mm] $x\ge [/mm] 0$ richtig (für [mm] $x^n$).
[/mm]
Ich tipe mal, dass das Buch die Null nur zu einem Intervall hinzugefügt hat, um eucg nicht zu verwirren.
Max
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 22:02 Mo 11.04.2005 | Autor: | der_puma |
> Hi Christopher,
>
> ich habe bisher immer [mm]\le[/mm] oder [mm]\ge[/mm] weggelassen, weil man
> theoretisch in beiden Fällen die Null hinzunehmen kann! Es
> wäre also immer auch [mm]x\le0[/mm] und [mm]x\ge 0[/mm] richtig (für [mm]x^n[/mm]).
> Ich tipe mal, dass das Buch die Null nur zu einem
> Intervall hinzugefügt hat, um eucg nicht zu verwirren.
>
> Max
wäre dann auch in beiden fällen [mm]x\le2[/mm] und [mm]x\ge 2[/mm] richtig gewesen?
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 22:18 Mo 11.04.2005 | Autor: | Stefan |
Hallo!
> wäre dann auch in beiden fällen [mm]x\le2[/mm] und [mm]x\ge 2[/mm]
> richtig gewesen?
Du meinst bei deiner ursprünglichen Funktion
$x [mm] \mapsto (x-2)^4+1$ [/mm] ?
Ja, auf jeden Fall. Es ist reine Geschmacksache, ob man die Extremstellen zu den Monotoniebereichen hinzunimmt oder nicht. Per definitionem darf man das jedenfalls.
Viele Grüße
Stefan
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 06:48 Di 12.04.2005 | Autor: | der_puma |
alles klar danke das wolllt ich wissen
gruß christopher
|
|
|
|