Potenzmenge < Lineare Algebra < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 11:29 Sa 28.04.2007 | Autor: | solero |
Aufgabe | Seien A und B Teilmengen von C. Zeigen Sie:
a.) { K [mm] \in [/mm] P(C): B [mm] \subseteq [/mm] K} [mm] \subseteq [/mm] { K [mm] \in [/mm] P(C): A [mm] \subseteq [/mm] K } [mm] \Rightarrow [/mm] A [mm] \subseteq [/mm] B
b.) { K [mm] \in [/mm] P(C): B [mm] \subseteq [/mm] K } [mm] \cap [/mm] { K [mm] \in [/mm] P(C): A [mm] \subseteq [/mm] K } = { K [mm] \in [/mm] P(C): (A [mm] \cup [/mm] B) [mm] \subseteq [/mm] K }
Dabei ist mit P(C) = {M: M [mm] \subseteq [/mm] C} die Potenzmenge (= Menge aller Teilmengen) gemeint. |
hallo,
und zwar habe ich folgendes problem. die aussage in a.) z.b. tue ich verstehen, nur fällt es mir schwer, wie man beim beweisen dieser aussage vorgehen soll! kann mir vlt bitte jemand einen tipp geben?
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 15:15 Sa 28.04.2007 | Autor: | felixf |
Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)
Hallo!
> Seien A und B Teilmengen von C. Zeigen Sie:
> a.) { K [mm]\in[/mm] P(C): B [mm]\subseteq[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)
K} [mm]\subseteq[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)
{ K [mm]\in[/mm] P(C): A
> [mm]\subseteq[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)
K } [mm]\Rightarrow[/mm] A [mm]\subseteq[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)
B
>
> b.) { K [mm]\in[/mm] P(C): B [mm]\subseteq[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)
K } [mm]\cap[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)
{ K [mm]\in[/mm] P(C): A
> [mm]\subseteq[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)
Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)
K } = { K [mm]\in[/mm] P(C): (A [mm]\cup[/mm] B) [mm]\subseteq[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)
Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)
K }
>
> Dabei ist mit P(C) = {M: M [mm]\subseteq[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)
C} die Potenzmenge (=
> Menge aller Teilmengen) gemeint.
> hallo,
>
> und zwar habe ich folgendes problem. die aussage in a.)
> z.b. tue ich verstehen, nur fällt es mir schwer, wie man
> beim beweisen dieser aussage vorgehen soll! kann mir vlt
> bitte jemand einen tipp geben?
Es gibt da einen ganz einfachen: $B$ selber ist in der ersten Menge enthalten.
Zu b): Zeige beide Inklusionen. Nimm dir z.B. eine Menge $K$, die in $\{ K \in P(C) \mid A \cup B \subseteq K \}$ liegt, und zeige dass sie in $\{ K \in P(C) \mid A \subseteq K \}$ und $\{ K \in P(C) \mid B \subseteq K \}$ liegt, womit sie in dem Durchschnitt dieser beiden Mengen liegt.
LG Felix
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 17:32 Sa 28.04.2007 | Autor: | solero |
wie meinst du das, B ist in der ersten menge enthalten?? in der erste menge steht doch nur das B teilmenge von k ist und diese menge wiederum teilmenge von A ist, welches auch teilmenge von K ist.
ich verstehe nicht, wie man draus schlussfolgern kann, dass A teilmenge von B ist!! müsste es nicht umgekehrt heissen, also B teilmenge von A????????
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 19:18 Sa 28.04.2007 | Autor: | felixf |
Hallo!
> wie meinst du das, B ist in der ersten menge enthalten?? in
> der erste menge steht doch nur das B teilmenge von k ist
> und diese menge wiederum teilmenge von A ist, welches auch
> teilmenge von K ist.
Du solltest dir mal ueberlegen, wass die Menge [mm] $\{ K \in P(C) : B \subseteq K \}$ [/mm] ueberhaupt sein soll. Das ist die Menge aller Teilmengen von $C$, die $B$ enthalten. Wieso ist $B$ jetzt in dieser Menge enthalten?
> ich verstehe nicht, wie man draus schlussfolgern kann,
> dass A teilmenge von B ist!! müsste es nicht umgekehrt
> heissen, also B teilmenge von A????????
Nein.
Ueberleg dir mal genau, was die Inklusion [mm] $\{ K \in P(C) : B \subseteq K \} \subseteq \{ K \in P(C) : A \subseteq K \}$ [/mm] fuer die Teilmengen in [mm] $\{ K \in P(C) : B \subseteq K \}$ [/mm] bedeutet.
LG Felix
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 20:18 So 29.04.2007 | Autor: | Lughor |
Könntest du einen Tipp geben, wie man das nun zeigen soll?
Bisher habe ich es noch nicht geschaft, das zu beweisen.
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 20:22 So 29.04.2007 | Autor: | felixf |
Hallo!
> Könntest du einen Tipp geben, wie man das nun zeigen soll?
> Bisher habe ich es noch nicht geschaft, das zu beweisen.
Der Beweis steht hier schon in diesem Thread. Das schwere bei dieser Aufgabe ist, die Mengen zu verstehen und die Inklusion richtig zu ``uebersetzen''. Wenn du damit nicht klar kommst, musst du uns schon genau verraten wo du steckenbleibst, dann koennen wir versuchen dir zu helfen.
LG Felix
|
|
|
|