www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Englisch
  Status Grammatik
  Status Lektüre
  Status Korrekturlesen
  Status Übersetzung
  Status Sonstiges (Englisch)

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Komplexe Analysis" - Potenzreihenentwicklung
Potenzreihenentwicklung < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Potenzreihenentwicklung: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 00:42 Fr 10.10.2008
Autor: meg

Aufgabe
[mm] \summe_{n=0}^{\infty} a_{n} (z-i*\pi )^n [/mm] Potenzreihenenticklung in f(z) = [mm] \bruch{e^z}{z+1}. [/mm]

Wie kann man berechnen, dass

a) [mm] \summe_{n=0}^{\infty} a_{n} (\pi )^n [/mm] konvergiert

b) [mm] a_{1}=\bruch{\pi}{1+\pi^2} [/mm] ?

        
Bezug
Potenzreihenentwicklung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 00:52 Fr 10.10.2008
Autor: pelzig


> [mm]\summe_{n=0}^{\infty} a_{n} (z-i*\pi )^n[/mm] Potenzreihenenticklung in f(z) = [mm]\bruch{e^z}{z+1}.[/mm]

Was hat die Reihe mit der Funktion $f(z)$ zu tun? Oder sind das zwei unabhängige Aufgaben? Schreibe mal die Aufgabe mal genauer hin.

Gruß, Robert

Bezug
                
Bezug
Potenzreihenentwicklung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 01:57 Fr 10.10.2008
Autor: meg


> > [mm]\summe_{n=0}^{\infty} a_{n} (z-i*\pi )^n[/mm]
> Potenzreihenenticklung in f(z) = [mm]\bruch{e^z}{z+1}.[/mm]
>  Was hat die Reihe mit der Funktion [mm]f(z)[/mm] zu tun? Oder sind
> das zwei unabhängige Aufgaben? Schreibe mal die Aufgabe mal
> genauer hin.
>  
> Gruß, Robert


Potenzreihenentwicklung VON nicht IN, sorry!!




Bezug
        
Bezug
Potenzreihenentwicklung: Antwort
Status: (Antwort) fertig Status 
Datum: 03:10 Fr 10.10.2008
Autor: pelzig


> b) [mm]a_{1}=\bruch{\pi}{1+\pi^2}[/mm] ?

Du kannst die [mm] $a_k$ [/mm] ja einfach mal ausrechnen. Durch die Substitution [mm] $z:=z+i\pi$ [/mm] erhälst du

1) [mm] $\sum_{k\ge0}a_kz^k=f(z+i\pi)=\frac{-e^z}{z+i\pi+1}$. [/mm]
2) [mm] $\frac{-e^z}{z+i\pi+1}\cdot(z+i\pi+1)=-e^z=-\sum_{k\ge0}\frac{1}{k!}z^k$ [/mm]

Daraus folgt:

3) [mm] $\left(\sum_{k\ge1}a_{k-1}z^k\right)+(1+i\pi)\left(\sum_{k\ge0}a_kz^k\right)=-\sum_{k\ge0}\frac{1}{k!}z^k$ [/mm]

Durch Koeffizientenvergleich erhälst du eine rekursive Darstellung für [mm] $a_k$. [/mm] Leider habe ich mich auf dem Weg irgendwo verrechnet, vielleicht hast du ja mehr Erfolg.

Gruß, Robert

Bezug
        
Bezug
Potenzreihenentwicklung: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 01:20 So 12.10.2008
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.englischraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]