www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Englisch
  Status Grammatik
  Status Lektüre
  Status Korrekturlesen
  Status Übersetzung
  Status Sonstiges (Englisch)

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Algebra" - Primelement
Primelement < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Primelement: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:03 Fr 27.01.2006
Autor: cloe

Aufgabe
Es sei [mm] 2\in\IZ\wurzel{-5} [/mm]
Man beweise, ob 2 Primelent in [mm] \IZ\wurzel{-5} [/mm] ist.

Zunächst erstaml die Definition:

Sei R ein Ring, a [mm] \in [/mm] R, es heißt
a ein Primelement, falls aus a|bc folgt, dass a|b oder a|c.

Beweis:

6 = (1 + [mm] \sqrt{-5}) [/mm] (1 - [mm] \sqrt{-5}) [/mm]

nun ist 2|6, wäre 2 Primelement, so müsste [mm] 2|(1+\sqrt{-5}) [/mm] oder [mm] 2|(1-\sqrt{-5}) [/mm]
gelten, was offensichtlich falsch ist.
Also ist 2 nicht Primelement


Meine Frage ist, wie man auf folgende Zeile kommt:

6 = (1 + [mm] \sqrt{-5})(1 [/mm] - [mm] \sqrt{-5}) [/mm]

Kann mir da bitte jemand weiterhelfen.

Danke im voraus.


        
Bezug
Primelement: Wie kommt man drauf?
Status: (Antwort) fertig Status 
Datum: 10:27 Fr 27.01.2006
Autor: Hugo_Sanchez-Vicario

Hallo Cloe,

diesen Beweis würde ich einen Standard-Beweis nennen. Man kommt auf die fragliche Zeile, weil sich irgendein schlauer Mensch das sich mal so gedacht hat.

Hier geht es darum, dass man im Ring [mm] $\IZ[\sqrt{-n}]$ [/mm] für gewisse $n$ die Zahl $1+n$ das Produkt aus 2 und einer anderen Zahl p ist, wobei p in [mm] $\IZ$ [/mm] eine Primzahl ist. Das ist z.B. für $n=5$, $n=13$ oder $n=37$ der Fall.

Dann gibt es in [mm] $\IZ[\sqrt{-n}]$ [/mm] zwei unterschiedliche Faktorisierungen von $1+n$. Einerseits gilt
$1+n=2p$
und andererseits
[mm] $1+n$=$1-(\sqrt{-n})^2$=$(1+\sqrt{-n})(1-\sqrt{-n})$ [/mm]
aufgrund der dritten binomischen Formel.

Man zeigt dadurch, dass die Zahl 2 (und auch die Zahl p) keinen der Faktoren in der zweiten Faktorisierung teilt, so dass sie kein Primelement ist. Der Ring [mm] $\IZ[\sqrt{-n}]$ [/mm] ist in diesem Fall speziell darauf zugeschnitten, dass man diese zweideutige Faktorisierung von $1+n$ hat. Die Frage ist also vielmehr, welche Zahl in diesem Ring muss ich betrachten, damit ich eine konventionelle und eine neuartige Zerlegung in Faktoren bekomme.

Hugo

PS: Du bist doch jetzt schon über ein Jahr im MatheRaum. Es wäre sehr nett, wenn du zumindest einige Details über deine Person in deinem Profil eintragen würdest; zum Beispiel wäre es hilfreich zu wissen, was du studierst oder beruflich tust und wie alt du ungefähr bist.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.englischraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]