Primideale < Zahlentheorie < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 16:12 Di 17.06.2008 | Autor: | koi |
Aufgabe | Sei K = [mm] \IQ(\alpha) [/mm] mit [mm] \alpha³ [/mm] = 2 und es sei bekannt, dass der Ganzheitsring [mm] O_{k} [/mm] gleich [mm] \IZ[\alpha] [/mm] ist. Zeigen Sie, dass [mm] \alpha O_{k} [/mm] und [mm] (\alpha+1)O_{k} [/mm] Primideale in [mm] O_{k} [/mm] sind. |
Hallo zusammen!
Mir fehlt zu der Aufgabe irgendwie vollkommen der Zugang.
Aus [mm] \alpha³ [/mm] = 2 sehe ich doch, dass das von [mm] \alpha [/mm] erzeugte Ideal (Hauptideal?) als 3. Potenz das von 2 erzeugte Ideal hat und von dem weiß ich, dass es ein Primideal in [mm] \IZ [/mm] ist.
Dann müsste ich ja [mm] \alpha [/mm] eindeutig als Produkt von Primidealen in [mm] O_{k} [/mm] schreiben können. Wie folgt denn daraus dann, dass [mm] \alpha [/mm] auch ein Primideal ist? Überlege ich überhaupt in die richtige Richtung, oder brauche ich das für die Aufgabe gar nicht? Kann mir da jem einen Denkanstoß geben?
Lg
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 13:07 Mi 18.06.2008 | Autor: | statler |
Hallo!
> Sei K = [mm]\IQ(\alpha)[/mm] mit [mm]\alpha³[/mm] = 2 und es sei bekannt,
> dass der Ganzheitsring [mm]O_{k}[/mm] gleich [mm]\IZ[\alpha][/mm] ist. Zeigen
> Sie, dass [mm]\alpha O_{k}[/mm] und [mm](\alpha+1)O_{k}[/mm] Primideale in
> [mm]O_{k}[/mm] sind.
> Mir fehlt zu der Aufgabe irgendwie vollkommen der Zugang.
> Aus [mm]\alpha³[/mm] = 2 sehe ich doch, dass das von [mm]\alpha[/mm] erzeugte
> Ideal (Hauptideal?) als 3. Potenz das von 2 erzeugte Ideal
> hat und von dem weiß ich, dass es ein Primideal in [mm]\IZ[/mm] ist.
..., aber nicht in [mm] \IZ[\alpha]
[/mm]
> Dann müsste ich ja [mm]\alpha[/mm] eindeutig als Produkt von
> Primidealen in [mm]O_{k}[/mm] schreiben können. Wie folgt denn
> daraus dann, dass [mm]\alpha[/mm] auch ein Primideal ist?
Daraus gar nicht ...
> Überlege
> ich überhaupt in die richtige Richtung, oder brauche ich
> das für die Aufgabe gar nicht? Kann mir da jem einen
> Denkanstoß geben?
Ich denke, man sollte sich hier die Restklassenringe explizit hinschreiben und nachweisen, daß es Integritätsringe sind.
Für den 1. Fall:
[mm] \IZ[\alpha] [/mm] sind die quadr. Polynome in [mm] \alpha [/mm] mit Koeffizienten in [mm] \IZ.
[/mm]
[mm] \alpha*\IZ[\alpha] [/mm] sind dann die Polynome, deren konstanter Term gerade ist.
Die einen modulo die anderen gibt dann F2, und das ist sogar ein Körper. (Naja, endliche Integritätsringe sind immer Körper.)
Kann es sein, daß sich im 2. Fall F3 ergibt? Das irritiert mich noch etwas, aber es ist ja auch keine Galois-Erweiterung.
Gruß aus HH-Harburg
Dieter
|
|
|
|
|
Status: |
(Korrektur) richtig (detailiert geprüft) | Datum: | 14:07 Mi 18.06.2008 | Autor: | felixf |
Hallo Dieter,
> Ich denke, man sollte sich hier die Restklassenringe
> explizit hinschreiben und nachweisen, daß es
> Integritätsringe sind.
>
> Für den 1. Fall:
> [mm]\IZ[\alpha][/mm] sind die quadr. Polynome in [mm]\alpha[/mm] mit
> Koeffizienten in [mm]\IZ.[/mm]
> [mm]\alpha*\IZ[\alpha][/mm] sind dann die Polynome, deren
> konstanter Term gerade ist.
>
> Die einen modulo die anderen gibt dann F2, und das ist
> sogar ein Körper. (Naja, endliche Integritätsringe sind
> immer Körper.)
> Kann es sein, daß sich im 2. Fall F3 ergibt?
Ja, das stimmt auch.
LG Felix
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 14:16 Mi 18.06.2008 | Autor: | koi |
Hey!
Danke für die Antworten!!
LG
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 14:25 Mi 18.06.2008 | Autor: | felixf |
Hallo,
etwas ist mir noch eingefallen: es reicht ja zu zeigen, dass die Norm von [mm] $\alpha$ [/mm] und $1 + [mm] \alpha$ [/mm] jeweils eine Primzahl ist. Da die Norm eines Elements gleich der Norm des davon aufgespannten Hauptideals entspricht, und die Norm des Hauptideals die Anzahl der Elemente des Restklassenringes ist, folgt aus [mm] $N(\alpha) [/mm] = p$ bzw. $N(1 + [mm] \alpha) [/mm] = p$, dass [mm] $\alpha O_k$ [/mm] und $(1 + [mm] \alpha) O_k$ [/mm] Primideale sein muessen.
Wenn die Norm die Potenz einer Primzahl waere, muesste man das ganze genauer nachpruefen. Wenn die Norm verschiedene Primteiler haette, waeren es garantiert keine Primideale.
LG Felix
|
|
|
|