www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Englisch
  Status Grammatik
  Status Lektüre
  Status Korrekturlesen
  Status Übersetzung
  Status Sonstiges (Englisch)

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Zahlentheorie" - Primyahlen
Primyahlen < Zahlentheorie < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Primyahlen: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 13:59 Di 01.08.2006
Autor: mond

Aufgabe
(a) Yeige, dass folgendes system von Äquivalenzen eine Lösung hat oder beweis das Gegenteil.

x [mm] \equiv [/mm] 1 (mod 3)
x  [mm] \equiv [/mm] 3( mod 5)
x  [mm] \equiv [/mm] 0 (mod 11)

b) Gib eine Lösung des Systems

x [mm] \equiv2 [/mm] (mod 6)
x  [mm] \equiv [/mm] 6( mod 10)
x  [mm] \equiv [/mm] 0 (mod 22)
an.(Hinweis: vergleiche das System mit dem aus Teil a
c)

Die dritte Zeile des Systems aus Teil b soll durch eine Äquivalenz der Form

x  [mm] \equiv [/mm] y (mod 22)
ersetzt werden.Für welche y  < 22 hat das System dann eine Lösung, für welche nicht.
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

ist die Loesung so richtig bitte hilfe ich habe einen Test

(a)
x [mm] \equiv [/mm] 1 (mod 3)
x  [mm] \equiv [/mm] 3( mod 5)
x  [mm] \equiv [/mm] 0 (mod 11)

r1=1
r2=3
r3=0
m1=3
m2=5
m3=11

M=m1.m2.m3=3.5.11=165
M/m1=55=1 mod 3  [mm] \Rightarrow [/mm] 4.1=1 mod 3 [mm] \Rightarrow [/mm] a1=4
M/m2=33=3 mod 5  [mm] \Rightarrow [/mm] 2.3=1 mod 5 [mm] \Rightarrow [/mm] a2=2
M/m3=15=4 mod 11 [mm] \Rightarrow3.4=1 [/mm] mod 11 [mm] \Rightarrow [/mm] a3=3

x= [mm] \summe_{i=1}^{3} [/mm] ri ai M/mi
= 418  > 165
418= 2. 165 + 88
[mm] \Rightarrow [/mm] x=88 ist die Loesung


b)x [mm] \equiv2 [/mm] (mod 6)
x  [mm] \equiv [/mm] 6( mod 10)
x  [mm] \equiv [/mm] 0 (mod 22)

r1=2
r2=6
r3=0
m1=6
m2=10
m3=22
m1, m2 , m3 nicht relativ Prim

x=6a+2=16b+6=22c+0
[mm] \Rightarrow [/mm] 6a-10b=4
wenn a=b=-1
[mm] \Rightarrow [/mm] x=-4 keine Loesung  <0
Aber
x=6.10-4=56 >0 ist eine Loesung

c) 0 [mm] \le [/mm] rj  < mj
[mm] \Rightarrow 0\le [/mm] y < 22 um das System eine Loesung hat

        
Bezug
Primyahlen: teils - teils
Status: (Antwort) fertig Status 
Datum: 14:16 Di 01.08.2006
Autor: statler

Hi!

> (a) Yeige, dass folgendes system von Äquivalenzen eine
> Lösung hat oder beweis das Gegenteil.
>  
> x [mm]\equiv[/mm] 1 (mod 3)
>  x  [mm]\equiv[/mm] 3( mod 5)
>  x  [mm]\equiv[/mm] 0 (mod 11)
>  
> b) Gib eine Lösung des Systems
>  
> x [mm]\equiv2[/mm] (mod 6)
>  x  [mm]\equiv[/mm] 6( mod 10)
>  x  [mm]\equiv[/mm] 0 (mod 22)
>  an.(Hinweis: vergleiche das System mit dem aus Teil a
>  c)
>  
> Die dritte Zeile des Systems aus Teil b soll durch eine
> Äquivalenz der Form
>  
> x  [mm]\equiv[/mm] y (mod 22)
>  ersetzt werden.Für welche y  < 22 hat das System dann eine
> Lösung, für welche nicht.
>  Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  
> ist die Loesung so richtig bitte hilfe ich habe einen Test
>  
> (a)
>  x [mm]\equiv[/mm] 1 (mod 3)
>  x  [mm]\equiv[/mm] 3( mod 5)
>  x  [mm]\equiv[/mm] 0 (mod 11)
>  
> r1=1
>  r2=3
>  r3=0
>  m1=3
>  m2=5
>  m3=11
>  
> M=m1.m2.m3=3.5.11=165
>  M/m1=55=1 mod 3  [mm]\Rightarrow[/mm] 4.1=1 mod 3 [mm]\Rightarrow[/mm] a1=4
>  M/m2=33=3 mod 5  [mm]\Rightarrow[/mm] 2.3=1 mod 5 [mm]\Rightarrow[/mm] a2=2
>  M/m3=15=4 mod 11 [mm]\Rightarrow3.4=1[/mm] mod 11 [mm]\Rightarrow[/mm] a3=3
>  
> x= [mm]\summe_{i=1}^{3}[/mm] ri ai M/mi
>  = 418  > 165

>  418= 2. 165 + 88
>  [mm]\Rightarrow[/mm] x=88 ist die Loesung

Einverstanden [ok], aber es sollte besser heißen 'eine Lösung', weil es viele gibt.

> b)x [mm]\equiv2[/mm] (mod 6)
>  x  [mm]\equiv[/mm] 6( mod 10)
>  x  [mm]\equiv[/mm] 0 (mod 22)
>  
> r1=2
>  r2=6
>  r3=0
>  m1=6
>  m2=10
>  m3=22
>  m1, m2 , m3 nicht relativ Prim
>  
> x=6a+2=16b+6=22c+0
>  [mm]\Rightarrow[/mm] 6a-10b=4
>  wenn a=b=-1
>  [mm]\Rightarrow[/mm] x=-4 keine Loesung  <0
>  Aber
>  x=6.10-4=56 >0 ist eine Loesung

Nee, [notok], 56 ist doch nicht [mm] \equiv [/mm] 0 mod 22
Aber die Zahlen in b) sind immer doppelt so groß wie die in a), das sollte helfen!

> c) 0 [mm]\le[/mm] rj  < mj
>   [mm]\Rightarrow 0\le[/mm] y < 22 um das System eine Loesung hat

Da sehe ich keine Antwort auf die Frage.

Gruß
Dieter


Bezug
                
Bezug
Primyahlen: ruekfrage
Status: (Frage) beantwortet Status 
Datum: 14:37 Di 01.08.2006
Autor: mond

Haben Sie eine Idee um schritt c zu schaffen.
koennen Sie mir hilfen

Bezug
                        
Bezug
Primyahlen: vllt probieren?
Status: (Antwort) fertig Status 
Datum: 14:54 Di 01.08.2006
Autor: statler

Hi!

> Haben Sie eine Idee um schritt c zu schaffen.
>  koennen Sie mir hilfen

Wir sind hier normalerweise per 'du'.
Du könntest dich da ranprobieren und würdest dann feststellen, daß es mit den geraden Zahlen geht und mit den ungeraden nicht, vielleicht findest du auch den Grund, du schreibst sehr wenig Text, solltest du aber, auch, damit dein Deutsch besser wird.

Gruß
Dieter



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.englischraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]