www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Englisch
  Status Grammatik
  Status Lektüre
  Status Korrekturlesen
  Status Übersetzung
  Status Sonstiges (Englisch)

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Moduln und Vektorräume" - Quadrat bei Kongruenzklassen
Quadrat bei Kongruenzklassen < Moduln/Vektorraum < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Quadrat bei Kongruenzklassen: Was ist hier ein Quadrat?
Status: (Frage) beantwortet Status 
Datum: 20:07 So 09.11.2008
Autor: Piezke

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Hallo,
ich habe eine für viele von euch wohl sehr simple Frage.

Angenommen wir haben einen Körper vom Typ [mm] \IZ|n\IZ [/mm] mit n = Primzahl.
Was bedeutet Quadrate bzgl. der Elemente der Körpers - also bzgl. der Kongruenzklassen? Wie ist ein solches quadratisches Element definiert?
Ich habe nach langer Suche leider keinen Hinweis gefunden.

Lg

Piezke

        
Bezug
Quadrat bei Kongruenzklassen: Antwort
Status: (Antwort) fertig Status 
Datum: 10:32 Mo 10.11.2008
Autor: angela.h.b.


> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  
> Hallo,
>  ich habe eine für viele von euch wohl sehr simple Frage.
>  
> Angenommen wir haben einen Körper vom Typ [mm]\IZ|n\IZ[/mm] mit n =
> Primzahl.
>  Was bedeutet Quadrate bzgl. der Elemente der Körpers -
> also bzgl. der Kongruenzklassen? Wie ist ein solches
> quadratisches Element definiert?

Hallo,

ich kenne jetzt Eure Schreibweise nicht, ob mit Querstrich oder in eckigen Klammern. Ich nehme jetzt Querstriche.

In [mm] \IZ [/mm] / [mm] n\IZ [/mm] sind die Elemente [mm] \overline{0}, \overline{1},\overline{2}, [/mm] ..., [mm] \overline{n-2},\overline{n-1 } [/mm]  enthalten.

Ihr habt auf dieser Menge eine ein Multiplikation erklärt.

Ein Element [mm] \overline{r} [/mm]  wäre ein Quadrat in   [mm] \IZ [/mm] / [mm] n\IZ [/mm] , wenn es ein Element  [mm] \overline{s} [/mm]  gäbe mit [mm] \overline{r} =\overline{s}*\overline{s} =\overline{s}^2. [/mm]

Gruß v. Angela

Bezug
                
Bezug
Quadrat bei Kongruenzklassen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:08 Mo 10.11.2008
Autor: Piezke

Danke für die Antwort.

Man munkelt es gäbe da noch andere Quadrate ;)

Ich hatte mir gedacht, dass bei z.B. [mm] \IZ|17\IZ [/mm] die Quadrate [1],[4],[9],[16]
gibt. Doch währende der Vorlesung hörte ich in den Reihen hinter mir, dass es mehr gäbe. Und wenn ich versuche, mir so einige andere Fragen zu beantworten bzgl. der Linearen Algebra kommt mir meine Überlegung mit [1],[4],[9],[16] einfach zu simpel vor.

Gibt es mehr ? ... und wenn ja warum ?

Und Danke nochmal für das Willkommen bei meiner ersten Frage.

Bezug
                        
Bezug
Quadrat bei Kongruenzklassen: Antwort
Status: (Antwort) fertig Status 
Datum: 16:17 Mo 10.11.2008
Autor: angela.h.b.


> Danke für die Antwort.
>  
> Man munkelt es gäbe da noch andere Quadrate ;)

Hallo,

guck Dir an, was ich geschrieben habe:

"Ein Element $ [mm] \overline{r} [/mm] $  wäre ein Quadrat in   $ [mm] \IZ [/mm] $ / $ [mm] n\IZ [/mm] $ , wenn es ein Element  $ [mm] \overline{s} [/mm] $  gäbe mit $ [mm] \overline{r} =\overline{s}\cdot{}\overline{s} =\overline{s}^2. [/mm] $"

Nehmen wir n=17.

> Ich hatte mir gedacht, dass bei z.B. [mm]\IZ|17\IZ[/mm] die Quadrate
> [1],[4],[9],[16]

Jetzt weiter  

[mm] [5]^2= [/mm] [25]=[8]
[mm] [6]^2=[36]=[2] [/mm]

usw.

Kannst ja jetzt mal durchschauen, was alles Quadrate sind.

Gruß v. Angela

Bezug
                                
Bezug
Quadrat bei Kongruenzklassen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:31 Mo 10.11.2008
Autor: Piezke

Da Platzt der Knoten.

Viele Dank für die schnelle Antwort.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.englischraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]