www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Englisch
  Status Grammatik
  Status Lektüre
  Status Korrekturlesen
  Status Übersetzung
  Status Sonstiges (Englisch)

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Schul-Analysis" - Quadratische Funktionen
Quadratische Funktionen < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Quadratische Funktionen: Übung
Status: (Frage) beantwortet Status 
Datum: 17:40 Mo 10.10.2005
Autor: Kristof

Hallo,
habe eine Aufgabe bekommen die ich nun Lösen sollte. Habe sie soweit gelöst nur kommen da wirklich sehr merkwürdige ergebnisse raus. Ist es so richtig?

Aufgabe :
Der Graph der quadratischen Funktion geht durch die Punkte :

P1 (-1|-16/3) P2 (1|-16/3) P3 (6|18)

Stelle die Funktionsgleichung auf. Bestimme die Nullstellen der Funktion. Gib an, in welchen Intervall der Graph ansteigt und in welchem er fällt.

Habe erstmal zu jeden Punkt einen Therm gemacht.

I   = 1a -1b+c = -16/3
II  = 1a +1b+c= -16/3
III = 36a+6b+c= 18

_____________________

Daraus folgt die Kooefizientenmatrix :

1   -1   1  -16/3
1    1   1  -16/3
36  6  1     18

_____________________
Kommt dann raus :

1  0  0      0,6666666667
0  1  0      0
0  0  1     -6

_____________________

Der Funktionstherm sieht dann so aus :

f (x) = 0,6666666667x² +0x -6

Rechne die Nullstellen immer mit der P Q Formel aus, da fühl ich mich am sichersten. Also :

f (x) = 0,6666666667x² +0x -6 | : 0,6666666667
       = x2 +0x -9

p = 0 q = 9

x1,2 = 0 +|- (Wurzel 0² +9)
x1,2 = 0 +|- 3

x1 = 3  x2 = -3 So habe ich die Nullstellen errechnet.
Okay, weiter gehts. Jetzt kommt das mit den Intervallen.

Der Graph fällt : ] -(negativ) unendlichg ; 0[
Der Graph steigt : ] 0 ; unendlich [

Ist das so richtig?
Wäre nett wenn das mal einer Überprüft.

Ps : Mein Lehrer möchte in der Klausur Brüche aber wie bringe ich 0,6666666667 in einen Bruch? Normalerweise macht des mein GTR aber hab es probiert und es hat nicht geklappt :(


        
Bezug
Quadratische Funktionen: Antwort
Status: (Antwort) fertig Status 
Datum: 17:50 Mo 10.10.2005
Autor: XPatrickX

Hallo..

also die Funktion des Graphen stimmt.

Es sieht aber eleganter aus, wenn du 0x nicht mitschreibst, da 0x nunmal nichts ist.


Und 0,6666.... sind als Bruch [mm] \bruch{2}{3}. [/mm] Ich denke so etwas sollte man einfach wissen. Ebenso ist [mm] \bruch{1}{3} [/mm] = 0,3333333



Auch die Steigung und das Gefälle ist richtig, man schreibt es dann so:

Graph fällt: ]- [mm] \infty [/mm] ; 0[
Graph steigt: ]0 ;  [mm] \infty [/mm] [

Wobei diese gekippte 8 unendlich heißt.


Gruß Patrick

Bezug
                
Bezug
Quadratische Funktionen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:15 Mo 10.10.2005
Autor: Kristof


> Hallo..
>  
> also die Funktion des Graphen stimmt.

Dankeschön das du es dir mal angeguckt hast ;).

> Es sieht aber eleganter aus, wenn du 0x nicht mitschreibst,
> da 0x nunmal nichts ist.

Ja, das weiß ich ja eigentlich. Aber ist es denn ein fehler? Ich mache das meistens weil ich mich dann sicherer fühle. Hmm, mein Mathe Lehrer sagt es mir auch jedesmal, dass es da nicht hin muss...
Vielleicht sollte ich's wirklich mal lassen +g+

>
> Und 0,6666.... sind als Bruch [mm]\bruch{2}{3}.[/mm] Ich denke so
> etwas sollte man einfach wissen. Ebenso ist [mm]\bruch{1}{3}[/mm] =
> 0,3333333
>  

Okay, man sollte es wissen +g+ hab ich wohl verpennt. Aber wieso zeigt das der TR denn nicht an? Denkt der auch, ich müsste es wissen oder liegt es daran, das ich immer 0,666666666(7) mit der 7 eingegeben habe? Sollte ich das weglassen?

>
> Auch die Steigung und das Gefälle ist richtig, man schreibt
> es dann so:
>  
> Graph fällt: ]- [mm]\infty[/mm] ; 0[
>  Graph steigt: ]0 ;  [mm]\infty[/mm] [
>  
> Wobei diese gekippte 8 unendlich heißt.

Ja, das mit der gekippten 8 weiß ich ;) dankeschön. Nur wusste nicht wie ich's hier rein schreiben sollte.

> Gruß Patrick



Bezug
                        
Bezug
Quadratische Funktionen: Immer gleich?
Status: (Frage) beantwortet Status 
Datum: 18:18 Mo 10.10.2005
Autor: Kristof

Habe nochmal ne Frage.
Wie ist das bei einer Parabel ist der Intervall für die Steigung bzw. das Gefälle immer ]-(negativ) unendlich; 0[ und umgekehrt?
Hatten das nicht und unser Mathe Lehrer setzt es trotzdem für die Klausur am Donnerstag vorraus :(

Bezug
                                
Bezug
Quadratische Funktionen: Antwort
Status: (Antwort) fertig Status 
Datum: 18:28 Mo 10.10.2005
Autor: Bastiane

Hallo Kristof!

> Habe nochmal ne Frage.
>  Wie ist das bei einer Parabel ist der Intervall für die
> Steigung bzw. das Gefälle immer ]-(negativ) unendlich; 0[
> und umgekehrt?

Ich bin nicht sicher, ob ich wirklich weiß, was du meinst, aber ich glaube es ist nicht so. Es kommt ganz darauf an, wo der Scheitelpunkt liegt. Wenn er auf der y-Achse liegt, dann ist es immer so, dass der Graph entweder von [mm] ]-\infty,0] [/mm] fällt und von [mm] [0,\infty[ [/mm] steigt oder genau umgekehrt. Wenn der Scheitelpunkt aber z. B. bei -0,5 liegt (bei der Funktion [mm] y=x^2+x), [/mm] dann fällt der Graph von [mm] ]-\infty,-0,5] [/mm] und steigt von [mm] [-0,5,\infty[. [/mm] Also es ändert sich immer genau am Scheitelpunkt.

Übrigens kannst du auf die Formeln klicken, dann siehst du, was du eingeben musst, um sie auch zu schreiben, z. B. beim [mm] \infty. [/mm] Oder du guckst unten in den Eingabehilfen nach.

Viele Grüße
Bastiane
[cap]


Bezug
                                
Bezug
Quadratische Funktionen: Mathebank!
Status: (Antwort) fertig Status 
Datum: 08:41 Di 11.10.2005
Autor: informix

Hallo Kristof,
> Habe nochmal ne Frage.
>  Wie ist das bei einer Parabel ist der Intervall für die
> Steigung bzw. das Gefälle immer ]-(negativ) unendlich; 0[
> und umgekehrt?
>  Hatten das nicht und unser Mathe Lehrer setzt es trotzdem
> für die Klausur am Donnerstag vorraus :(

[guckstduhier] MBParabel in unserer MBMatheBank.

Gruß Informix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.englischraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]