www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Englisch
  Status Grammatik
  Status Lektüre
  Status Korrekturlesen
  Status Übersetzung
  Status Sonstiges (Englisch)

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Ganzrationale Funktionen" - Quadratische Gleichung 3. + 4.
Quadratische Gleichung 3. + 4. < Ganzrationale Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Quadratische Gleichung 3. + 4.: Tipps
Status: (Frage) beantwortet Status 
Datum: 17:57 Di 24.04.2007
Autor: MAXmin

Wie kann man eine Quatratische Gleichung 3. bzw. 4. Grades am schnellsten lösen?

Gauß'sches Koefitientenmatrix?















Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
Quadratische Gleichung 3. + 4.: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:02 Di 24.04.2007
Autor: Steffi21

Hallo,

eine qudratische Gleichung 3. oder 4. Grades gibt es nicht, eine quadratische Gleichung hat Grad 2, schicke uns mal eine konkrete Aufgabe,

Steffi

Bezug
                
Bezug
Quadratische Gleichung 3. + 4.: Fehlerkorrektur
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:16 Di 24.04.2007
Autor: MAXmin

Ich meine natürlich eine Polynomfunktion 3. bzw. 4. Grades. Tut mir leid.

Ein Beispiel ist:

f(x) = [mm] -x^3 +x^2 [/mm] +6x

Bezug
        
Bezug
Quadratische Gleichung 3. + 4.: Antwort
Status: (Antwort) fertig Status 
Datum: 18:27 Di 24.04.2007
Autor: Steffi21

Hallo,

[mm] f(x)=-x^{3}+x^{2}+6x [/mm]
du möchtest bestimmt Nullstellen berechnen, klammere hier x aus
[mm] 0=x(-x^{2}+x+6) [/mm]

[mm] x_1=0 [/mm] kannst du sofort ablesen, bleibt noch die quadratische Gleichung [mm] 0=-x^{2}+x+6, [/mm] die kannst du nach Mitternacht oder p-q lösen,
[mm] x_2_3= [/mm]
Steffi

Bezug
                
Bezug
Quadratische Gleichung 3. + 4.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:56 Di 24.04.2007
Autor: MAXmin

Kann ich das allgemein so sagen:

Erst probieren etwas auszuklammern um dann einfach die Mitternachtsformel anwenden zu können.
Wenn aber eine additive Konstante Vorhanden ist geht das ja nicht, dann muss ich das Horner'sche schema hernehmen.
Oder gibt es noch eine schnellere Altanative?

Bezug
                        
Bezug
Quadratische Gleichung 3. + 4.: probieren / Polynomdivision
Status: (Antwort) fertig Status 
Datum: 21:26 Di 24.04.2007
Autor: Loddar

Hallo MAXmin,

[willkommenmr] !!


> Erst probieren etwas auszuklammern um dann einfach die
> Mitternachtsformel anwenden zu können.

[ok]


> Wenn aber eine additive Konstante Vorhanden ist geht das
> ja nicht, dann muss ich das Horner'sche schema hernehmen.
> Oder gibt es noch eine schnellere Altanative?

Wenn es eine ganzahlige Lösung des entsprechenden Polynoms gibt, sollte man etwas Probieren: und zwar mit den ganzzahligen Teilern des Absolutgliedes (= additive Konstante) beginnen.

Dann kannst Du eine entsprechende MBPolynomdivision durchführen, um das Problem auf eine quadratische Gleichung zu reduzieren.


Gruß
Loddar


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.englischraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]