Quadratische Gleichungen < Klassen 8-10 < Schule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 08:40 Mi 25.07.2012 | Autor: | jahlleh |
Ich kenne die binomischen Formeln,aber ich kann keinen Bezug zur quadratischen Ergänzung herstelle,d.h.ich sehe,dass eine Umformung in Richtung binom.Formel stattfinden soll, aber WIE das geht,verstehe ich nicht,trotz diverser Bücher aus der BiBo und Interneterklärungen.Bin da wohl sehr sperrig.Ob mir das jemand so einfach als möglich erklären kann?
L.G.anja
Ich habe diese Frage in keinem Forum uf anderen Internetseiten gestellt.
|
|
|
|
Hallo,
betrachten wir mal ein Trockenschwimm-Beispiel, einen Term:
[mm] x^2-6x+8
[/mm]
Es sieht so aus, als wäre er ein Binom. Klar ist: es müsste ein 2. Binom sein (wegen dem Minuszeichen in der Mitte). Nehmen wir mal an unser a aus dem Binom sei x, also
a=x
Dann folgt natürlich sofort
[mm] a^2=x^2
[/mm]
Jetzt die -6x. Die stehen an der Stelle, wo in der Formel -2ab steht. Also
-2ab=-6x
Es ist aber a=x, also
-2xb=-6x => b=3 => [mm] b^2=9
[/mm]
Jetzt müsste das Binom am Ende aber ein [mm] b^2, [/mm] also hier eine 9 haben, also passt die 8 nicht dazu. Und jetzt kommt der eigentliche Trick: die Ergänzung. Man ergänzt dabei stets mit [mm] b^2, [/mm] muss dies aber, um den Wert des Terms nicht zu ändern, sofort wieder abziehen:
[mm]x^2-6x+8=x^2-6x+9+8-9=(x-3)^2-1[/mm]
So, und nun machen wir aus dem ganzen eine quadratische Gleichung:
[mm] x^2-6x+8=0
[/mm]
Und die lösen wir jetzt mit unserer quadratischen Ergänzung. Wir wissen schon, dass wir die Gleichung umformen können:
[mm] (x-3)^2-1=0
[/mm]
Weiter geht es:
[mm] (x-3)^2=1
[/mm]
[mm] x-3=\pm{1}
[/mm]
[mm] x_{1,2}=3\pm{1} [/mm] ; [mm] x_1=2, x_2=4
[/mm]
Konntest du es bis hierher nachvollziehen?
Gruß, Diophant
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 09:22 Mi 25.07.2012 | Autor: | jahlleh |
Bis [mm] x^2-6x+8-9 [/mm] kann ich alles prima nachvollziehen,DANKE, a b e r [mm] ab(x-3)^2-1 [/mm] ist schon unverständlich.Weshalb die -1? Und die weitere Rechnung bleibt leider auch rätselhaft.Und Du gibst Dir so viel Mühe...
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 09:42 Mi 25.07.2012 | Autor: | M.Rex |
> Bis [mm]x^2-6x+8-9[/mm] kann ich alles prima nachvollziehen,DANKE, a
> b e r [mm]ab(x-3)^2-1[/mm] ist schon unverständlich.Weshalb die -1?
> Und die weitere Rechnung bleibt leider auch rätselhaft.Und
> Du gibst Dir so viel Mühe...
Vielleicht hilft dir eine andere Schreibweise da weiter.
Du hast:
[mm] x^2-6x+8 [/mm]
Ziel ist es, das ganze so zu schreiben, dass du dort einen Ausdruck der Form
[mm]\text{Binom}\pm\text{irgendwas ohne Variable}[/mm]
stehen hast.
Bei deinem Fall:
[mm] x^2-6x+8 [/mm]
Das x²-6x sieht ja schon sehr nach der 2 binomischen Formel, "rückwärts" angewandt aus.
Deutlicher wird es vielleicht, wenn man schreibt:
[mm] x^2-6x+8 [/mm]
[mm] =\green{x^2-2\cdot3x}+8 [/mm]
Vergleichen wir den farbigen Teil mal mit
a²-2ab+b²=(a-b)²
Dann erkennst du hoffentlich recht schnell, dass hier a=x und damit b=3, also b²=9 ist.
Und diese 3²=9, die ich noch brauche, um den grünen Teil mit der binomischen Formel zu bearbeiten, fügen wir nun mal hinzu. Damit sich der Wert des Termes aber nicht ändert, ziehen wir diese aber gleichzeitig wieder ab, wir haben also quasi eine Null addiert, das ganze nennt man dann quadratische Ergänzung.
Es gilt also:
[mm] x^2-6x+8 [/mm]
[mm] =x^2-2\cdot3x\red{+3^{2}-3^{2}}+8 [/mm]
Auf die ersten Drei Summanden wenden wir nun die 2 Binomische Formel an, damit gilt:
[mm] x^2-6x+8 [/mm]
[mm] =\green{x^2-2\cdot3x+3^{2}}-3^{2}+8 [/mm]
[mm] =\green{(x-3)^{2}}-3^{2}+8 [/mm]
Nun noch zusammenfassen
[mm] x^2-6x+8 [/mm]
[mm] =x^2-2\cdot3x+3^{2}-3^{2}+8 [/mm]
[mm] =(x-3)^{2}-3^{2}+8 [/mm]
[mm] =(x-3)^{2}-9+8 [/mm]
[mm] =(x-3)^{2}-1 [/mm]
Marius
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 06:51 Do 26.07.2012 | Autor: | jahlleh |
Vielen tausend Dank;ich habs endlich verstanden und werde mir nun n paar Aufgaben suchen, um das Ganze zu vertiefen.
L.G.anja
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 08:06 Do 26.07.2012 | Autor: | Marcel |
Hallo,
> Ich kenne die binomischen Formeln,aber ich kann keinen
> Bezug zur quadratischen Ergänzung herstelle,d.h.ich
> sehe,dass eine Umformung in Richtung binom.Formel
> stattfinden soll, aber WIE das geht,verstehe ich
> nicht,trotz diverser Bücher aus der BiBo und
> Interneterklärungen.Bin da wohl sehr sperrig.Ob mir das
> jemand so einfach als möglich erklären kann?
ich mache es jedenfalls mal allgemein:
Ausgangspunkt ist es, eine Gleichung
[mm] $$(\*)\;\;\red{x^2+px}+q=0$$
[/mm]
lösen zu wollen, und zwar in der Variablen [mm] $x\,,$ [/mm] und [mm] $p\,$ [/mm] und [mm] $q\,$ [/mm] sind feste Parameter.
Wendet man die erste binomische Formel auf den Term [mm] $(x+a)^2$ [/mm] an, so hat man die Gleichung
[mm] $$(x+a)^2=\red{x^2+2*(ax)}+a^2=0\,.$$
[/mm]
Vergleicht man oben rotmarkiertes, so sieht man, dass mit [mm] $a=p/2\,$ [/mm] jedenfalls gilt
[mm] $$(x+\;(p/2))^2=x^2+2*((p/2)x)+(p/2)^2\,,$$
[/mm]
also
[mm] $$(\*\*)\;\;\;(x+\;(p/2))^2=x^2+px+(p/2)^2$$
[/mm]
Jetzt testen wir mal: Ist die Gleichung [mm] $(\*)$ [/mm] das gleiche wie [mm] $(x+\;(p/2))^2+q=0\,$? [/mm] (Es wird es nicht sein, aber ich will Dir ja zeigen, wie man durch überlegen + korrigieren auf das ganze kommt...)
Setzen wir also mal [mm] $(\*\*)$ [/mm] ein in die Gleichung [mm] $(x+\;(p/2))^2+q=0\,$:
[/mm]
[mm] $$(x+\;(p/2))^2+q=0$$
[/mm]
[mm] $$\gdw x^2+px+(p/2)^2+q=0\,.$$
[/mm]
Und jetzt kannst Du direkt vergleichen:
Wir sehen, dass
[mm] $$(x+\;(p/2))^2+q=0$$
[/mm]
[mm] $$\gdw x^2+px+(p/2)^2+q=0\,.$$
[/mm]
Untersuchen wollen wir aber die Gleichung
[mm] $$x^2+px+q=0\,.$$
[/mm]
Die zu untersuchende Gleichung schreiben wir um
[mm] $$x^2+px+(p/2)^2-(p/2)^2+q=0$$
[/mm]
[mm] $$(x+\;(p/2))^2+q-(p/2)^2=0\,.$$
[/mm]
Der Rest ist klar, oder? Im Prinzip fast man nun $x+p/2$ als neue Variable auf (etwa Variablensubstitution $y:=x+p/2$) und löst dann die quadratische Gleichung in dieser (etwa [mm] $y\,$) [/mm] und resubstituiert.
Also Fazit:
Eigentlich ist alles, was man sich überlegen muss, das gilt:
[mm] $$x^2+px=(x+\;(p/2))^2-(p/2)^2\,.$$
[/mm]
Gruß,
Marcel
|
|
|
|