Quadraturformel < Numerik < Hochschule < Mathe < Vorhilfe
|
Aufgabe | Sei [mm] $\mathbb{N}_{0}$. [/mm] Gegeben sei eine Unterteilung $ 0 = [mm] x_{0} [/mm] < [mm] \ldots [/mm] < [mm] x_{n} [/mm] = 1$ des Intervalls $[0, 1]$.
Zeigen Sie, dass für die Gewichte [mm] $\{ \alpha_{i} \}_{i = 0}^{n}$ [/mm] einer Quadraturformel der Ordnung $n$ mit paarweise disjunkten Knoten [mm] $\{ x_{i} \}_{i = 0}^{n}$, [/mm] welche die Bedingung [mm] $x_{i} [/mm] = 1 - [mm] x_{n - i }$ [/mm] erfüllen, gilt: [mm] $\alpha_{i} [/mm] = [mm] \alpha_{n - i}$, [/mm] für $ i [mm] \in \{ 0, 1, \ldots, n \}$. [/mm] |
Ich komme bei dieser Aufgabe nicht weiter, bzw. ich bräuchte einen Tipp, da mir zu diesem Beweis keinen Ansatz einfällt.
Ich habe erst versucht, die interpolatorische Quadraturformel für [mm] $\alpha_{i}$ [/mm] und [mm] $\alpha_{n - i}$ [/mm] zu schreiben, um daraus dann irgendwie zu schlussfolgern, dass [mm] $\alpha_{i} [/mm] = [mm] \alpha_{n - i }$ [/mm] gilt.
[mm] $\sum\limits_{i = 1}^{n} f(x_{i}) \cdot \alpha_{ i} [/mm] = [mm] \sum\limits_{i = 0 }^{n} f(x_{i}) \int_{0}^{1} L_{i}^{(n)} [/mm] (x) dx = [mm] \sum\limits_{i = 0 }^{n} [/mm] f(1 - [mm] x_{n - i }) \int_{0}^{1} L_{ i}^{(n)} [/mm] (x) dx$
[mm] $\sum\limits_{i = 1}^{n} f(x_{i}) \cdot \alpha_{n - i} [/mm] = [mm] \sum\limits_{i = 0 }^{n} f(x_{i}) \int_{0}^{1} L_{n - i}^{(n)} [/mm] (x) dx = [mm] \sum\limits_{i = 0 }^{n} [/mm] f(1 - [mm] x_{n - i }) \int_{0}^{1} L_{n - i}^{(n)} [/mm] (x) dx$
Aber dann weiß ich nicht mehr weiter, bzw. weiß nicht, wie ich die Bedingung [mm] $x_{i} [/mm] = 1 - [mm] x_{n - i }$ [/mm] verwenden kann.
Ich meine, ich kann nicht einfach sagen, dass [mm] $f(x_{i}) [/mm] = f(1 - [mm] x_{n - i }) [/mm] = [mm] y_{i} [/mm] = 1 - [mm] y_{n - i }$ [/mm] ist. Vielleicht ließe sich damit besser arbeiten, aber wie gesagt, das geht nicht.
Hat jemand einen Tipp für mich?
Bedanke mich schon mal im Voraus.
|
|
|
|
Hiho,
du hast ja bereits die Definition von [mm] $\alpha_i$ [/mm] verwendet, nämlich:
[mm] $\alpha_i [/mm] = [mm] \int_{0}^{1} L_{i}^{(n)} [/mm] (x) dx$
bzw.
[mm] $\alpha_{n-i} [/mm] = [mm] \int_{0}^{1} L_{n-i}^{(n)} [/mm] (x) dx$
D.h. zu zeigen ist [mm] $L_{i}^{(n)} [/mm] (x) = [mm] L_{n-i}^{(n)} [/mm] (x)$
Gruß,
Gono
|
|
|
|
|
Hi!
> Hiho,
>
> du hast ja bereits die Definition von [mm]\alpha_i[/mm] verwendet,
> nämlich:
>
> [mm]\alpha_i = \int_{0}^{1} L_{i}^{(n)} (x) dx[/mm]
>
> bzw.
>
> [mm]\alpha_{n-i} = \int_{0}^{1} L_{n-i}^{(n)} (x) dx[/mm]
>
> D.h. zu zeigen ist [mm]L_{i}^{(n)} (x) = L_{n-i}^{(n)} (x)[/mm]
>
> Gruß,
> Gono
Warum muss ich [mm] $L_{i}^{(n)} [/mm] (x) = [mm] L_{n-i}^{(n)} [/mm] (x)$ zeigen? Kann es nicht auch sein, dass [mm] $L_{i}^{(n)} [/mm] (x)$ und $ [mm] L_{n-i}^{(n)} [/mm] (x)$ nicht identisch sind, aber ihr Integral dafür sehr wohl?
Ich muss zeigen:
[mm] $\alpha_{i} [/mm] - [mm] \alpha_{n - i} [/mm] = [mm] \int_{0}^{1} L_{i}^{(n)} [/mm] (x) dx - [mm] \int_{0}^{1} L_{n - i}^{(n)} [/mm] (x) dx = [mm] \int_{0}^{1} \left ( L_{i}^{(n)} (x) - L_{n - i}^{(n)} (x) \right [/mm] ) dx = 0$
Aber dafür muss nicht unbedingt [mm] $L_{i}^{(n)} [/mm] (x) = [mm] L_{n-i}^{(n)} [/mm] (x)$ sein, oder?
Ich wüsste aber nicht, wie man die Gleichheit [mm] $L_{i}^{(n)} [/mm] (x) = [mm] L_{n-i}^{(n)} [/mm] (x)$ zeigen kann.
Mein Ansatz wäre folgender:
[mm] $L_{i}^{(n)} [/mm] (x) - [mm] L_{n - i}^{(n)} [/mm] (x) = [mm] \prod\limits_{j = 0, j \neq i}^{n} \frac{x - x_{j}}{x_{i} - x_{j}} [/mm] - [mm] \prod\limits_{j = 0, j \neq n - i}^{n} \frac{x - x_{j}}{x_{n - i} - x_{j}} [/mm] = [mm] \frac{ \prod\limits_{j = 0, j \neq i}^{n} (x - x_{j}) }{\prod\limits_{j = 0, j \neq i}^{n} (x_{i} - x_{j})} [/mm] - [mm] \frac{\prod\limits_{j = 0, j \neq n - i}^{n} (x - x_{j})}{\prod\limits_{j = 0, j \neq n - i}^{n} (x_{n - i} - x_{j})} [/mm] =
[mm] \frac{ \prod\limits_{j = 0, j \neq i}^{n} (x - x_{j}) \cdot \prod\limits_{j = 0, j \neq n - i}^{n} (x_{n - i} - x_{j})}{\prod\limits_{j = 0, j \neq i}^{n} (x_{i} - x_{j}) \cdot \prod\limits_{j = 0, j \neq n - i}^{n} (x_{n - i} - x_{j})} [/mm] - [mm] \frac{\prod\limits_{j = 0, j \neq n - i}^{n} (x - x_{j}) \cdot \prod\limits_{j = 0, j \neq i}^{n} (x_{i} - x_{j}) }{\prod\limits_{j = 0, j \neq n - i}^{n} (x_{n- i} - x_{j}) \cdot \prod\limits_{j = 0, j \neq i}^{n} (x_{i} - x_{j})} [/mm] $
Aber wenn ich das weiter versuche zu vereinfachen wird das nicht Null. Gibt es da einen besseren Weg?
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 09:48 Sa 14.12.2019 | Autor: | Gonozal_IX |
Hiho,
du hast völlig recht mit deiner Vermutung und schon bei zwei Punkten [mm] $x_0 [/mm] = [mm] x_1$ [/mm] gilt nicht notwendigerweise [mm] $L_0 [/mm] = [mm] L_1$, [/mm] allerdings [mm] $\int_0^1 L_0(x) [/mm] - [mm] L_1 [/mm] (x) dx = 0$
Mein Ansatz funktioniert nicht, ich hab aber vermutlich heute leider auch keine Zeit mich weiter damit zu beschäftigen.
Gruß,
Gono
|
|
|
|
|
> Ich muss zeigen:
>
>
> [mm]\alpha_{i} - \alpha_{n - i} = \int_{0}^{1} L_{i}^{(n)} (x) dx - \int_{0}^{1} L_{n - i}^{(n)} (x) dx = \int_{0}^{1} \left ( L_{i}^{(n)} (x) - L_{n - i}^{(n)} (x) \right ) dx = 0[/mm]
>
> Aber dafür muss nicht unbedingt [mm]L_{i}^{(n)} (x) = L_{n-i}^{(n)} (x)[/mm]
> sein, oder?
>
[mm]L_{n - i}^{(n)}[/mm] (x) = [mm]\prod\limits_{j = 0, j \neq n - i}^{n} \frac{x - x_{j}}{x_{n - i} - x_{j}}[/mm]
= [mm]\prod\limits_{j = 0, j \neq n - i}^{n} \frac{-x + x_{j}}{-x_{n - i} + x_{j}}[/mm]
= [mm]\prod\limits_{j = 0, j \neq n - i}^{n} \frac{(1-x) - (1-x_{j})}{(1-x_{n - i}) - (1-x_{j})}[/mm]
= [mm]\prod\limits_{j = 0, j \neq n-i}^{n} \frac{(1-x) - x_{n-j}}{x_{i} - x_{n-j}}[/mm] jetzt j durch n-j ersetzen, dann läuft das Ganze rückwärts; außerdem ist dann j [mm] \ne [/mm] i:
= [mm]\prod\limits_{j = 0, j \neq i}^{n} \frac{(1-x) - x_{j}}{x_{i} - x_{j}}[/mm])
Damit sieht [mm]L_{n - i}^{(n)}[/mm] bis auf (1-x) statt x so aus wie [mm]L_{i}^{(n)}[/mm] .
[mm] \int_{0}^{1} L_{n - i}^{(n)} [/mm] (x) dx [mm] =\int_{0}^{1}[/mm] [mm]\prod\limits_{j = 0, j \neq i}^{n} \frac{(1-x) - x_{j}}{x_{i} - x_{j}}[/mm] dx Substitution: y = 1-x [mm] \Rightarrow [/mm] dx = - dy
...= [mm] \int_{1}^{0}[/mm] [mm]\prod\limits_{j = 0, j \neq i}^{n} \frac{(y) - x_{j}}{x_{i} - x_{j}}(-dy)[/mm] = - [mm] \int_{1}^{0}[/mm] [mm]\prod\limits_{j = 0, j \neq i}^{n} \frac{(y) - x_{j}}{x_{i} - x_{j}}dy[/mm] = [mm] \int_{0}^{1}[/mm] [mm]\prod\limits_{j = 0, j \neq i}^{n} \frac{(y) - x_{j}}{x_{i} - x_{j}}dy[/mm] = [mm] \int_{0}^{1} L_{i}^{(n)} [/mm] (y) dy = [mm] \int_{0}^{1} L_{i}^{(n)} [/mm] (x) dx
|
|
|
|
|
Hey, danke für die Antwort. Ich war heute lange unterwegs, daher kann ich erst jetzt antworten.
> [mm]L_{n - i}^{(n)}[/mm] (x) = [mm]\prod\limits_{j = 0, j \neq n - i}^{n} \frac{x - x_{j}}{x_{n - i} - x_{j}}[/mm]
>
> = [mm]\prod\limits_{j = 0, j \neq n - i}^{n} \frac{-x + x_{j}}{-x_{n - i} + x_{j}}[/mm]
>
> = [mm]\prod\limits_{j = 0, j \neq n - i}^{n} \frac{(1-x) - (1-x_{j})}{(1-x_{n - i}) - (1-x_{j})}[/mm]
>
> = [mm]\prod\limits_{j = 0, j \neq n-i}^{n} \frac{(1-x) - x_{n-j}}{x_{i} - x_{n-j}}[/mm]
> jetzt j durch n-j ersetzen, dann läuft das Ganze
> rückwärts; außerdem ist dann j [mm]\ne[/mm] i:
>
> = [mm]\prod\limits_{j = 0, j \neq i}^{n} \frac{(1-x) - x_{j}}{x_{i} - x_{j}}[/mm])
>
> Damit sieht [mm]L_{n - i}^{(n)}[/mm] bis auf (1-x) statt x so aus
> wie [mm]L_{i}^{(n)}[/mm] .
Bis hierhin ist alles verständlich.
[mm] >\int_{0}^{1} L_{n - i}^{(n)} [/mm] (x) dx [mm] =\int_{0}^{1} \prod\limits_{j = 0, j \neq i}^{n} \frac{(1-x) - x_{j}}{x_{i} - x_{j}} [/mm] dx Substitution: y = 1-x [mm] \Rightarrow [/mm] dx = - dy ...= [mm] \int_{1}^{0}\prod\limits_{j = 0, j \neq i}^{n} \frac{(y) - x_{j}}{x_{i} - x_{j}}(-dy) [/mm] = - [mm] \int_{1}^{0} \prod\limits_{j = 0, j \neq i}^{n} \frac{(y) - x_{j}}{x_{i} - x_{j}}dy [/mm] = [mm] \int_{0}^{1} \prod\limits_{j = 0, j \neq i}^{n} \frac{(y) - x_{j}}{x_{i} - x_{j}}dy
[/mm]
= [mm] \int_{0}^{1} L_{i}^{(n)} [/mm] (y) dy = [mm] \int_{0}^{1} L_{i}^{(n)} [/mm] (x) dx
Hier substituiere ich $y = 1 - x$ und daraus folgt dann $ dx = - dy$.
Dann habe ich:
[mm] $\int_{0}^{1} L_{n - i}^{(n)} [/mm] (x) dx [mm] =\int_{0}^{1} \prod\limits_{j = 0, j \neq i}^{n} \frac{(1-x) - x_{j}}{x_{i} - x_{j}} [/mm] dx = [mm] \int_{1 - 0}^{1 - 1}\prod\limits_{j = 0, j \neq i}^{n} \frac{(y) - x_{j}}{x_{i} - x_{j}}(-dy) [/mm] = - [mm] \int_{1}^{0} \prod\limits_{j = 0, j \neq i}^{n} \frac{(y) - x_{j}}{x_{i} - x_{j}}dy [/mm] = [mm] \int_{0}^{1} \prod\limits_{j = 0, j \neq i}^{n} \frac{(y) - x_{j}}{x_{i} - x_{j}}dy [/mm] = [mm] \int_{0}^{1} L_{i}^{(n)} [/mm] (y) dy = [mm] \int_{0}^{1} L_{i}^{(n)} [/mm] (x) dx$
Dann passt das, oder?
Und die Frage ist vielleicht banal, aber warum gilt auch [mm] $\int_{0}^{1} L_{i}^{(n)} [/mm] (y) dy = [mm] \int_{0}^{1} L_{i}^{(n)} [/mm] (x) dx $ ?
Sonst ist soweit alles klar. Ich bedanke mich bei dir und Gonozal!
|
|
|
|
|
Hiho,
> Und die Frage ist vielleicht banal, aber warum gilt auch
> [mm]\int_{0}^{1} L_{i}^{(n)} (y) dy = \int_{0}^{1} L_{i}^{(n)} (x) dx [/mm]
uh, da kann ich, Gott sei dank, wieder weiterhelfen ^^
Und: Ja, die Frage ist banal, es ist aber gut, sich über sowas Gedanken zu machen.
Ich will dir dafür drei Wege aufzeigen, wobei der letzte zu bevorzugen ist:
1: Die intuitive Begründung
[mm] $\int_{0}^{1} [/mm] f(x) dx$ ist eine relle Zahl, die vom Verhalten der Funktion $f$ im Intervall $(0,1)$ abhängt. Damit dieser Ausdruck wohldefiniert ist, sollte die Bezeichnung der Laufvariablen irrelevant sein.
2: Die Holzhammer-Methode
Wir substituieren $y = x$, dann ist $dy = dx$ und die Grenzen ändern sich nicht, daher:
[mm] $\int_{0}^{1} [/mm] f(x) dx = [mm] \int_{0}^{1} [/mm] f(y) dy$
3: Die Definitions-Begründung
Bezeichne Z Zerlegungen von [0,1], dann ist das Integral definiert als:
[mm] $\int_{0}^{1} [/mm] f(x) dx := [mm] \inf_Z \sum _{k=1}^{n}{\Big (}(x_{k}-x_{k-1})\cdot \sup _{x_{k-1}
Das x kommt nun nur im Supremum vor. Dort suchen wir den größten Wert von $f$ im Intervall [mm] $(x_{k-1},x_{k})$.
[/mm]
Ob wir das nun aber notieren als [mm] $\sup _{x_{k-1}
[mm] $\int_{0}^{1} [/mm] f(x) dx := [mm] \inf_Z \sum _{k=1}^{n}{\Big (}(x_{k}-x_{k-1})\cdot \sup _{x_{k-1}
Gruß,
Gono
|
|
|
|