www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Englisch
  Status Grammatik
  Status Lektüre
  Status Korrekturlesen
  Status Übersetzung
  Status Sonstiges (Englisch)

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis-Komplexe Zahlen" - Quadratwurzeln
Quadratwurzeln < Komplexe Zahlen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Quadratwurzeln: Erklärung
Status: (Frage) beantwortet Status 
Datum: 10:24 Do 26.08.2010
Autor: Bling

Aufgabe
Sei z = 1+i. Bestimme Real- und Imaginärteil der beiden Quadratwurzeln aus z.

Als aller erstes wollte ich gern mal wissen, was mit "der BEIDEN Quadratwurzeln" wohl gemeint sein könnte?

ist es hilfreich wenn man z hier in Polarform umschreibt?

[mm] z=\wurzel{2}*e^{\pi/4} [/mm]

        
Bezug
Quadratwurzeln: Antwort
Status: (Antwort) fertig Status 
Datum: 10:48 Do 26.08.2010
Autor: angela.h.b.


> Sei z = 1+i. Bestimme Real- und Imaginärteil der beiden
> Quadratwurzeln aus z.
>  Als aller erstes wollte ich gern mal wissen, was mit "der
> BEIDEN Quadratwurzeln" wohl gemeint sein könnte?

Hallo,

damit sind die beiden komplexen Zahlen gemeint, die mit sich selbst multipliziert 1+i ergeben.

Eine Lösungsmöglichkeit wäre, daß Du sagst: ich suche die komplexe Zahl a+ib mit [mm] (a+ib)^2=1+i. [/mm]

(Ausmultiplizieren, Koeffizientenvergleich)


>  
> ist es hilfreich wenn man z hier in Polarform umschreibt?
>  
> [mm]z=\wurzel{2}*e^{\red{i*}\pi/4}[/mm]  

Das kannst Du auch machen.
Dann suchst Du die komplexen Zahlen [mm]r*e^{i\varphi}[/mm] mit [mm] (r*e^{i\varphi})^2=\wurzel{2}*e^{i*\pi/4}. [/mm]


Du kannst es auch mehr geometrisch angehen: beim Multiplizieren von komplexen Zahlen multiplizieren sich die Beträge, und es addieren sich die Winkel. Du suchst also die Zahlen, bei denen das Quadrat des Betrages [mm] \wurzel{2} [/mm] ergibt und bei denen das doppelte des Winkels 45° ergibt.

So, mehr sag' ich da erstmal nicht zu.

Doch: möglicherweise habt Ihr bereits eine vorgefertigte Formel für die Wurzeln aus komplexen zahlen aufgeschrieben.

Gruß v. Angela


















Bezug
                
Bezug
Quadratwurzeln: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:10 Do 26.08.2010
Autor: Bling

Da steht sie ja, die Formel... auf meiner Zusammenfassung ^^

[mm] \wurzel[n]{z}=z^{1/n}= |z|^{1/n}*exp(\bruch{i*\phi}{n}) [/mm]

==>   [mm] \phi [/mm] = [mm] tan^{-1}(1)=\bruch{\pi}{4} [/mm] oder [mm] \bruch{5*\pi}{4} [/mm]

[mm] 2^{1/4}*exp(\bruch{i*\bruch{\pi}{4}}{2}) [/mm]
oder
[mm] 2^{1/4}*exp(\bruch{i*\bruch{5*\pi}{4}}{2}) [/mm]

und dann die beiden noch mit [mm] r*exp(i*\phi)=r*cos(\phi)+r*i*sin(\phi) [/mm] in Real- und Imaginärteil aufteilen!



Bezug
                        
Bezug
Quadratwurzeln: Antwort
Status: (Antwort) fertig Status 
Datum: 11:25 Do 26.08.2010
Autor: angela.h.b.


> Da steht sie ja, die Formel... auf meiner Zusammenfassung
> ^^
>  
> [mm]1[/mm]

Hallo,

irgendwie müßte da aber auch noch etwas für Dein [mm] \phi [/mm] stehen.

Normalerweise wird die Sache so notiert:

für [mm] z\neq [/mm] 0 mit [mm] z=|z|\,\mathrm e^{\mathrm i\varphi} [/mm] sind die n-ten Wurzeln aus z die komplexen Zahlen

    [mm] z_k=\sqrt[n]{|a|}\cdot\exp\left(\frac{\mathrm i\varphi}{n} + k\cdot\frac{2\pi\mathrm i}{n}\right)\quad(k=0,1,\dots,n-1) [/mm] .



Wie auch immer: Deine  Winkel stimmen. Vom Doppelbruch im Ergebnis allerdings solltest Du Dich noch trennen.

>  
> und dann die beiden noch mit
> [...] in Real- und
> Imaginärteil aufteilen!

Ja.

Gruß v. Angela


Bezug
                                
Bezug
Quadratwurzeln: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:33 Do 26.08.2010
Autor: Bling

Danke schön!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.englischraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]