Quotient zyklisch < Zahlentheorie < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 10:40 Fr 22.10.2010 | Autor: | Arcesius |
Aufgabe | $m [mm] \in \mathbb{Z}\backslash\lbrace0,\pm1\rbrace$ [/mm] quadratfrei, $K = [mm] \mathbb{Q}/(X^{3}-m)\mathbb{Q}\left[T\right]$
[/mm]
[mm] $\alpha$ [/mm] das Bild von $T$ in $K$
[mm] \vdots [/mm]
(vi) Unter der Annahme [mm] $3\nmid [/mm] m$ beweise, dass der Quotient [mm] $\mathbb{Z}_{K}/\mathbb{Z}\left[\alpha\right]$ [/mm] eine zyklische Gruppe der Ordnung $d$ mit $d [mm] \mid [/mm] 3m$ ist. |
Hallo Zusammen.
Das ist eine Teilaufgabe aus einer Aufgabe bestehend aus 9 Teilaufgaben. (i) bis (v) hab ich bereits gelöst, jedoch habe ich für diesen Punkt hier nichts brauchbares.
Mit dem Struktursatz über endlich erzeugte [mm] $\mathbb{Z}$-Moduln [/mm] und mit der Aussage, dass sich die Disktiminanten bezüglich verschiedener Basen um einen Quadrat unterscheiden sollte diese Aufgabe zu lösen sein. Aber ich bin damit bisher auch nicht weiter gekommen..
Kann jemand bitte helfen? :)
Grüsse, Amaro
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 18:15 Fr 22.10.2010 | Autor: | felixf |
Moin Amaro,
> [mm]m \in \mathbb{Z}\backslash\lbrace0,\pm1\rbrace[/mm] quadratfrei,
> [mm]K = \mathbb{Q}/(X^{3}-m)\mathbb{Q}\left[T\right][/mm]
> [mm]\alpha[/mm]
> das Bild von [mm]T[/mm] in [mm]K[/mm]
>
> [mm]\vdots[/mm]
Was genau steht hier? Oft kann man damit etwas anfangen, um (vi) zu beweisen
> (vi) Unter der Annahme [mm]3\nmid m[/mm] beweise, dass der Quotient
> [mm]\mathbb{Z}_{K}/\mathbb{Z}\left[\alpha\right][/mm] eine zyklische
> Gruppe der Ordnung [mm]d[/mm] mit [mm]d \mid 3m[/mm] ist.
LG Felix
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 18:24 Fr 22.10.2010 | Autor: | Arcesius |
Hey Felix
> Moin Amaro,
>
> > [mm]m \in \mathbb{Z}\backslash\lbrace0,\pm1\rbrace[/mm] quadratfrei,
> > [mm]K = \mathbb{Q}/(X^{3}-m)\mathbb{Q}\left[T\right][/mm]
> >
> [mm]\alpha[/mm]
> > das Bild von [mm]T[/mm] in [mm]K[/mm]
> >
> > [mm]\vdots[/mm]
>
> Was genau steht hier? Oft kann man damit etwas anfangen, um
> (vi) zu beweisen
also anstatt [mm] $\vdots$ [/mm] ?
Da Stehen Teilaufgaben (i) bis (v). Aber die nützen hier wenig. Trotzdem schreibe ich sie kurz hin (aber eben, die habe ich bereits gelöst, also kann alles benutzt werden):
(i) Beweise, dass $K$ ein Zahlkörper von Grad 3 ist.
(ii) Zeige, [mm] $\triangle_{K/\mathbb{Q}}(1,\alpha,\alpha^{2}) [/mm] = [mm] -3^{3}m^{2}$
[/mm]
(iii) Falls $a,b,c [mm] \in \mathbb{Q}$, [/mm] so zeige dass [mm] $N_{K/\mathbb{Q}}(a+b\alpha+c\alpha^{2}) [/mm] = [mm] a^{3}-mb^{3}+m^{2}c^{3}-3mabc$
[/mm]
(iv) Im Fall $m=2$ beweise [mm] $(1-\alpha) \in \mathbb{Z}_{K}^{\times}$ [/mm] und folgere, dass [mm] $a^{3}-2b^{3}+4c^{3}-6abc [/mm] = 0$ unendlich viele Lösungen in [mm] $\mathbb{Z}$ [/mm] hat.
(v) Sei $x = [mm] a+b\alpha+c\alpha^{2}$ [/mm] mit $a,b,c [mm] \in \mathbb{Q}$. [/mm] Nutze die Spurabbildung um $3a [mm] \in \mathbb{Z}$ [/mm] zu zeigen falls $x [mm] \in \mathbb{Z}_{K}$
[/mm]
Na? ;)
>
> LG Felix
>
Grüsse, Amaro
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 18:47 Fr 22.10.2010 | Autor: | felixf |
Moin!
> > > [mm]m \in \mathbb{Z}\backslash\lbrace0,\pm1\rbrace[/mm] quadratfrei,
> > > [mm]K = \mathbb{Q}/(X^{3}-m)\mathbb{Q}\left[T\right][/mm]
> > >
> > [mm]\alpha[/mm]
> > > das Bild von [mm]T[/mm] in [mm]K[/mm]
> > >
> > > [mm]\vdots[/mm]
> >
> > Was genau steht hier? Oft kann man damit etwas anfangen, um
> > (vi) zu beweisen
>
> also anstatt [mm]\vdots[/mm] ?
> Da Stehen Teilaufgaben (i) bis (v). Aber die nützen hier
> wenig.
Also z.B. (ii) nuetzt hier eine ganze Menge! :)
LG Felix
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 18:47 Fr 22.10.2010 | Autor: | felixf |
Moin!
> [mm]m \in \mathbb{Z}\backslash\lbrace0,\pm1\rbrace[/mm] quadratfrei,
> [mm]K = \mathbb{Q}/(X^{3}-m)\mathbb{Q}\left[T\right][/mm]
> [mm]\alpha[/mm]
> das Bild von [mm]T[/mm] in [mm]K[/mm]
>
> [mm]\vdots[/mm]
> (vi) Unter der Annahme [mm]3\nmid m[/mm] beweise, dass der Quotient
> [mm]\mathbb{Z}_{K}/\mathbb{Z}\left[\alpha\right][/mm] eine zyklische
> Gruppe der Ordnung [mm]d[/mm] mit [mm]d \mid 3m[/mm] ist.
>
> Hallo Zusammen.
>
> Das ist eine Teilaufgabe aus einer Aufgabe bestehend aus 9
> Teilaufgaben. (i) bis (v) hab ich bereits gelöst, jedoch
> habe ich für diesen Punkt hier nichts brauchbares.
>
> Mit dem Struktursatz über endlich erzeugte
> [mm]\mathbb{Z}[/mm]-Moduln und mit der Aussage, dass sich die
> Disktiminanten bezüglich verschiedener Basen um einen
> Quadrat unterscheiden sollte diese Aufgabe zu lösen sein.
> Aber ich bin damit bisher auch nicht weiter gekommen..
Wir haben [mm] $-3^3 m^2 \Delta_{K/\IQ}(1, \alpha, \alpha^2) [/mm] = [mm] \Delta_{K/\IQ} \cdot [\IZ_K [/mm] : [mm] \IZ[\alpha]]^2$ [/mm] nach (ii) und den von dir genannten Struktursatz.
Also muss [mm] $[\IZ_K [/mm] : [mm] \IZ[\alpha]]$ [/mm] ein Teiler von $3 m$ sein.
1. Fall: $3 [mm] \nmid [/mm] m$. Dann ist $3 m$ quadratfrei, und eine abelsche Gruppe mit quadratfreier Ordnung ist zyklisch. Also ist [mm] $\IZ_K [/mm] / [mm] \IZ[\alpha]$ [/mm] zyklisch, und die Ordnung teilt $3 m$.
2. Fall: $3 [mm] \mid [/mm] m$. Jetzt musst du sich davon ueberzeugen, dass die 3-Sylow-UG von [mm] $\IZ_K [/mm] / [mm] \IZ[\alpha]$ [/mm] zyklisch ist; daraus folgt, dass die ganze Gruppe zyklisch ist.
LG Felix
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 10:22 Sa 23.10.2010 | Autor: | Arcesius |
Hallo
> Moin!
>
> > [mm]m \in \mathbb{Z}\backslash\lbrace0,\pm1\rbrace[/mm] quadratfrei,
> > [mm]K = \mathbb{Q}/(X^{3}-m)\mathbb{Q}\left[T\right][/mm]
> >
> [mm]\alpha[/mm]
> > das Bild von [mm]T[/mm] in [mm]K[/mm]
> >
> > [mm]\vdots[/mm]
> > (vi) Unter der Annahme [mm]3\nmid m[/mm] beweise, dass der Quotient
> > [mm]\mathbb{Z}_{K}/\mathbb{Z}\left[\alpha\right][/mm] eine zyklische
> > Gruppe der Ordnung [mm]d[/mm] mit [mm]d \mid 3m[/mm] ist.
> > Mit dem Struktursatz über endlich erzeugte
> > [mm]\mathbb{Z}[/mm]-Moduln und mit der Aussage, dass sich die
> > Disktiminanten bezüglich verschiedener Basen um einen
> > Quadrat unterscheiden sollte diese Aufgabe zu lösen sein.
> > Aber ich bin damit bisher auch nicht weiter gekommen..
>
> Wir haben [mm]-3^3 m^2 \Delta_{K/\IQ}(1, \alpha, \alpha^2) = \Delta_{K/\IQ} \cdot [\IZ_K : \IZ[\alpha]]^2[/mm]
> nach (ii) und den von dir genannten Struktursatz.
Hmm.. das sehe ich jetzt nicht. Wenn wir die Diskriminante bezüglich der Basis [mm] $1,\alpha,\alpha^{2}$ [/mm] haben und eine zweite Basis [mm] $y_{1},y_{2},y_{3}$ [/mm] mit Übergangsmatrix $A$, dann ist ja
[mm] \triangle_{K/\mathbb{Q}}(1,\alpha,\alpha^{2}) [/mm] = [mm] det(A)^{2}\triangle_{K/\mathbb{Q}}(y_{1},y_{2},y_{3})$
[/mm]
Wie kommt man von hier zu deiner Beobachtung? Ich seh das grad net :)
>
> Also muss [mm][\IZ_K : \IZ[\alpha]][/mm] ein Teiler von [mm]3 m[/mm] sein.
>
> 1. Fall: [mm]3 \nmid m[/mm]. Dann ist [mm]3 m[/mm] quadratfrei, und eine
> abelsche Gruppe mit quadratfreier Ordnung ist zyklisch.
> Also ist [mm]\IZ_K / \IZ[\alpha][/mm] zyklisch, und die Ordnung
> teilt [mm]3 m[/mm].
>
> 2. Fall: [mm]3 \mid m[/mm]. Jetzt musst du sich davon ueberzeugen,
> dass die 3-Sylow-UG von [mm]\IZ_K / \IZ[\alpha][/mm] zyklisch ist;
> daraus folgt, dass die ganze Gruppe zyklisch ist.
>
Ja gut, die Annahme ist sowieso, dass $3 [mm] \nmid [/mm] m$ und somit ist nur Fall 1 zu betrachten. Die Folgerung aber kann ich nachvollziehen, danke!
> LG Felix
>
Grüsse,Amaro
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 03:07 So 24.10.2010 | Autor: | felixf |
Moin Amaro!
> > > [mm]m \in \mathbb{Z}\backslash\lbrace0,\pm1\rbrace[/mm] quadratfrei,
> > > [mm]K = \mathbb{Q}/(X^{3}-m)\mathbb{Q}\left[T\right][/mm]
> > >
> > [mm]\alpha[/mm]
> > > das Bild von [mm]T[/mm] in [mm]K[/mm]
> > >
> > > [mm]\vdots[/mm]
> > > (vi) Unter der Annahme [mm]3\nmid m[/mm] beweise, dass der Quotient
> > > [mm]\mathbb{Z}_{K}/\mathbb{Z}\left[\alpha\right][/mm] eine zyklische
> > > Gruppe der Ordnung [mm]d[/mm] mit [mm]d \mid 3m[/mm] ist.
>
> > > Mit dem Struktursatz über endlich erzeugte
> > > [mm]\mathbb{Z}[/mm]-Moduln und mit der Aussage, dass sich die
> > > Disktiminanten bezüglich verschiedener Basen um einen
> > > Quadrat unterscheiden sollte diese Aufgabe zu lösen sein.
> > > Aber ich bin damit bisher auch nicht weiter gekommen..
> >
> > Wir haben [mm]-3^3 m^2 \Delta_{K/\IQ}(1, \alpha, \alpha^2) = \Delta_{K/\IQ} \cdot [\IZ_K : \IZ[\alpha]]^2[/mm]
> > nach (ii) und den von dir genannten Struktursatz.
>
> Hmm.. das sehe ich jetzt nicht. Wenn wir die Diskriminante
> bezüglich der Basis [mm]1,\alpha,\alpha^{2}[/mm] haben und eine
> zweite Basis [mm]y_{1},y_{2},y_{3}[/mm] mit Übergangsmatrix [mm]A[/mm], dann
> ist ja
>
> [mm]\triangle_{K/\mathbb{Q}}(1,\alpha,\alpha^{2})[/mm] =
> [mm]det(A)^{2}\triangle_{K/\mathbb{Q}}(y_{1},y_{2},y_{3})$[/mm]
>
> Wie kommt man von hier zu deiner Beobachtung? Ich seh das
> grad net :)
Die folgt aus [mm] $[\IZ_K [/mm] : [mm] \IZ[\alpha]] [/mm] = [mm] [y_1 \IZ [/mm] + [mm] y_2 \IZ [/mm] + [mm] y_3 \IZ [/mm] : 1 [mm] \IZ [/mm] + [mm] \alpha \IZ [/mm] + [mm] \alpha^2 \IZ] [/mm] = [mm] |\det [/mm] A|$.
Das wiederum folgt daraus, dass wenn du den Isomorphismus [mm] $\varphi [/mm] : [mm] \IZ^3 \to \IZ_K$, $(\lambda_1, \lambda_2, \lambda_3) \mapsto \lambda_1 y_1 [/mm] + [mm] \lambda_2 y_2 [/mm] + [mm] \lambda_3 y_3$ [/mm] waehlst, dann [mm] $\varphi^{-1}(\IZ[\alpha])$ [/mm] durch $A$ beschrieben wird. (Wie genau haengt davon ab wie genau du nun $A$ definiert hast )
Und wenn [mm] $\Lambda [/mm] = [mm] \varphi^{-1}(\IZ[\alpha])$ [/mm] ist, dann ist also [mm] $[\IZ_K [/mm] : [mm] \IZ[\alpha]] [/mm] = [mm] [\IZ^3 [/mm] : [mm] \Lambda]$, [/mm] und das ist gerade [mm] $|\det [/mm] A|$, wie man z.B. mit der Hermite-Normalform sehen kann (oder mit der Smith-Normalform).
> > Also muss [mm][\IZ_K : \IZ[\alpha]][/mm] ein Teiler von [mm]3 m[/mm] sein.
> >
> > 1. Fall: [mm]3 \nmid m[/mm]. Dann ist [mm]3 m[/mm] quadratfrei, und eine
> > abelsche Gruppe mit quadratfreier Ordnung ist zyklisch.
> > Also ist [mm]\IZ_K / \IZ[\alpha][/mm] zyklisch, und die Ordnung
> > teilt [mm]3 m[/mm].
> >
> > 2. Fall: [mm]3 \mid m[/mm]. Jetzt musst du sich davon ueberzeugen,
> > dass die 3-Sylow-UG von [mm]\IZ_K / \IZ[\alpha][/mm] zyklisch ist;
> > daraus folgt, dass die ganze Gruppe zyklisch ist.
> >
>
> Ja gut, die Annahme ist sowieso, dass [mm]3 \nmid m[/mm] und somit
> ist nur Fall 1 zu betrachten.
Aeh ja, das hatte ich uebersehen :)
> Die Folgerung aber kann ich nachvollziehen, danke!
Bitte!
LG Felix
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 10:07 So 24.10.2010 | Autor: | Arcesius |
Aufgabe | (vii) $3 [mm] \nmid [/mm] m$. Sei $p$ Primteiler von $m$. Zeige: [mm] $\nexists [/mm] a [mm] \in \mathbb{Z}_{K}$ [/mm] mit Ordnung $p$ in [mm] $\mathbb{Z}_{K}/\mathbb{Z}\left[\alpha\right]$. [/mm] Schliesse $d [mm] \mid [/mm] 3$. |
Hallo
Das ist die nächste Teilaufgabe. Auch ne Zusatzaufgabe, ich komm nicht wirklich auf ne Lösung.
Ich hab einfach mal angefangen und gesagt: Aus der letzten Teilaufgabe weiss ich ja, dass [mm] $\mathbb{Z}_{K}/\mathbb{Z}\left[\alpha\right] [/mm] =: G$ zyklisch ist von Ordnung $d$. D.h. [mm] $\forall [/mm] x [mm] \in [/mm] G: [mm] x^{d} [/mm] = 1$.
Jetzt nehme ich an es gäbe ein $x [mm] \in [/mm] G$ s.d. [mm] $x^{p} [/mm] = 1$.
Schreibe $m = [mm] p_{1}\cdots p_{k}$ [/mm] Produkt von Primfaktoren. Dann gilt für $t [mm] \in \mathbb{N}_{>0}$ [/mm] und $p [mm] \in \lbrace p_{1},...,p_{k}\rbrace$:
[/mm]
[mm] $x^{d} [/mm] = [mm] x^{3\cdot m \cdot t} [/mm] = [mm] x^{3\cdot p_{1}\cdots p_{k}\cdot t} [/mm] = 1 = [mm] x^{p}$
[/mm]
Ha.. und jetzt? Kann damit irgendwie nix anfangen..
Vielleicht sieht jemand was mich zum Ziel führen könnte..?
Grüsse, Amaro
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 19:33 So 24.10.2010 | Autor: | felixf |
Moin!
> (vii) [mm]3 \nmid m[/mm]. Sei [mm]p[/mm] Primteiler von [mm]m[/mm]. Zeige: [mm]\nexists a \in \mathbb{Z}_{K}[/mm]
> mit Ordnung [mm]p[/mm] in
> [mm]\mathbb{Z}_{K}/\mathbb{Z}\left[\alpha\right][/mm]. Schliesse [mm]d \mid 3[/mm].
>
> Hallo
>
> Das ist die nächste Teilaufgabe. Auch ne Zusatzaufgabe,
> ich komm nicht wirklich auf ne Lösung.
>
> Ich hab einfach mal angefangen und gesagt: Aus der letzten
> Teilaufgabe weiss ich ja, dass
> [mm]\mathbb{Z}_{K}/\mathbb{Z}\left[\alpha\right] =: G[/mm] zyklisch
> ist von Ordnung [mm]d[/mm]. D.h. [mm]\forall x \in G: x^{d} = 1[/mm].
>
> Jetzt nehme ich an es gäbe ein [mm]x \in G[/mm] s.d. [mm]x^{p} = 1[/mm].
>
> Schreibe [mm]m = p_{1}\cdots p_{k}[/mm] Produkt von Primfaktoren.
> Dann gilt für [mm]t \in \mathbb{N}_{>0}[/mm] und [mm]p \in \lbrace p_{1},...,p_{k}\rbrace[/mm]:
>
> [mm]x^{d} = x^{3\cdot m \cdot t} = x^{3\cdot p_{1}\cdots p_{k}\cdot t} = 1 = x^{p}[/mm]
>
> Ha.. und jetzt? Kann damit irgendwie nix anfangen..
Nein, so kommst du auch nicht weiter.
> Vielleicht sieht jemand was mich zum Ziel führen
> könnte..?
Also angenommen, es gibt ein Element $x [mm] \in \mathcal{O}_K$ [/mm] mit $p x [mm] \in \IZ[\alpha]$. [/mm] Du musst jetzt zeigen: dann war $x$ bereits in [mm] $\IZ[\alpha]$.
[/mm]
Da $3$ kein Teiler von $m$ ist, folgt $p [mm] \neq [/mm] 3$.
Schreibe $x = a + b [mm] \alpha [/mm] + c [mm] \alpha^2$. [/mm] Nach (v) gilt $3 a [mm] \in \IZ$. [/mm] Da $p x [mm] \in \IZ[\alpha]$ [/mm] folgt $p a [mm] \in \IZ$, [/mm] woraus wir erhalten, dass bereits $a [mm] \in \IZ$ [/mm] ist, da $3$ und $p$ teierfremd sind.
So. Jetzt musst du nur noch zeigen, dass $b$ und $c$ in [mm] $\IZ$ [/mm] sind: dann folgt $x [mm] \in \IZ[\alpha]$. [/mm] Das ist aber nicht so schwer
Erstmal kannst du $x' = x - a$ anschauen; das ist nach Voraussetzung auch in [mm] $\mathcal{O}_K$, [/mm] und es gilt $p x' [mm] \in \IZ[\alpha]$. [/mm] Weiterhin gilt $x' [mm] \in \IZ[\alpha]$ [/mm] genau dann, wenn $x [mm] \in \IZ[\alpha]$ [/mm] gilt.
Jetzt hat $x'$ die Form $b [mm] \alpha [/mm] + c [mm] \alpha^2$. [/mm] Versuch hier doch mal etwas zu machen.
LG Felix
|
|
|
|