www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Englisch
  Status Grammatik
  Status Lektüre
  Status Korrekturlesen
  Status Übersetzung
  Status Sonstiges (Englisch)

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Mathe Klassen 8-10" - Radius eines Kegels
Radius eines Kegels < Klassen 8-10 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Radius eines Kegels: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 16:10 Di 07.06.2005
Autor: AngelLanding

Kegel mit h=8.6cm und Mantelfläche=164cm²
Gesucht ist r

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Radius eines Kegels: Antwort
Status: (Antwort) fertig Status 
Datum: 16:21 Di 07.06.2005
Autor: Paulus

r=7,2 cm

Bezug
                
Bezug
Radius eines Kegels: Frage
Status: (Frage) beantwortet Status 
Datum: 16:54 Di 07.06.2005
Autor: AngelLanding

ähmm ja und wie kommt man zu diesem ergebnis???

Bezug
                        
Bezug
Radius eines Kegels: Antwort
Status: (Antwort) fertig Status 
Datum: 17:09 Di 07.06.2005
Autor: Bastiane


> ähmm ja und wie kommt man zu diesem ergebnis???

Tja, das hättest du ja auch direkt mal fragen können...

Also, die Formel für die Mantelfläche eines Kegels ist:
[mm] M=\pi [/mm] rs, wobei s die "Kante" des Kegels ist.

Nun kannst du s, r und die gegebene Höhe über Pyhtagoras miteinander in Verbindung bringen:
[mm] r^2+8,6^2=s^2 [/mm]
Das kannst du nach r oder s auflösen und dann in die Mantelformel einsetzen, die Mantelfläche hast du ja gegeben. Somit hast du nur noch eine Variable gegeben, die du dann berechnen kannst. Alles klar? Probier's doch mal, und falls du nicht weiterkommst, poste deine Schritte.

Viele Grüße
Bastiane
[cap]




Bezug
                                
Bezug
Radius eines Kegels: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:18 Di 07.06.2005
Autor: AngelLanding

Wow danke das mir so schnell geholfen wurde! Hät ich nicht erwartet!
Leider bleib ich bei dieser Aufgabe immer wieder hängen...
Meine Schritte:
r²+8.6²=s²
M= [mm] \wurzel{r²+8,6²}*r* \pi [/mm]
dann
[mm] M²=(r²+8,6²)*r²*\pi² [/mm]
aber wie kann ich jetzt nach r auflösen?

Bezug
                                        
Bezug
Radius eines Kegels: quadrat. Gleichung
Status: (Antwort) fertig Status 
Datum: 19:51 Di 07.06.2005
Autor: leduart

Hallo Angel
(normale Briefe fangen mit ner Begrüßung an und hören mit nem netten Wort auf!


> Wow danke das mir so schnell geholfen wurde! Hät ich nicht
> erwartet!
>  Leider bleib ich bei dieser Aufgabe immer wieder
> hängen...
>  Meine Schritte:
>  r²+8.6²=s²
>  M= [mm]\wurzel{r²+8,6²}*r* \pi[/mm]
>  dann
>  [mm]M²=(r²+8,6²)*r²*\pi²[/mm]
>   aber wie kann ich jetzt nach r auflösen?

Nicht so [mm] schwer:\bruch{M^{2}}{\pi^{2}}=(r^{2})^{2} [/mm] +8,6²*r². M einsetzen, [mm] r^{2}=x, [/mm] quadratische Gleichung für x lösen, Wurzel ziehen, fertig
Gruss leduart

Bezug
                                                
Bezug
Radius eines Kegels: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:24 Mi 08.06.2005
Autor: AngelLanding

Danke für eure hilfe!!!!! Lieben gruß

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.englischraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]