Rand, Abschluss, ... < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 20:53 Mo 31.01.2011 | Autor: | SolRakt |
Hallo.
Ich weiß. Ich habe diese Frage schon vor langer Zeit mal gestellt, aber mein Tutor ist dazu nicht wirklich gekommen. :( Deswegen frage ich hier nochmal nach. Und zwar ( [] steht für den Abschluss ):
[mm] \partial(X \cap [/mm] Y) [mm] \subseteq [/mm] ( [mm] \partial(X) \cap [/mm] [Y] ) [mm] \cup [/mm] ( [x] [mm] \cap \partial(Y) [/mm] )
Das soll gezeigt werden. Kann mir da nochmal jemand helfen?
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 23:09 Mo 31.01.2011 | Autor: | felixf |
Moin!
> Hallo.
>
> Ich weiß. Ich habe diese Frage schon vor langer Zeit mal
> gestellt, aber mein Tutor ist dazu nicht wirklich gekommen.
> :( Deswegen frage ich hier nochmal nach. Und zwar ( []
> steht für den Abschluss ):
>
> [mm]\partial(X \cap[/mm] Y) [mm]\subseteq[/mm] ( [mm]\partial(X) \cap[/mm] [Y] ) [mm]\cup[/mm]
> ( [x] [mm]\cap \partial(Y)[/mm] )
Es gilt ja [mm] $\partial [/mm] T = [mm] \overline{T} \setminus \mathring{T}$. [/mm] Sei also $x [mm] \in \partial(X \cap [/mm] Y)$; dann ist $x [mm] \in \overline{X \cap Y} \subseteq \overline{X} \cap \overline{Y}$.
[/mm]
Es reicht also zu zeigen, dass nicht $x [mm] \in \mathring{X} \cap \mathring{Y}$ [/mm] liegt.
Nimm doch einfach mal an, dass dies der Fall ist, also $x [mm] \in \mathring{X} \cap \mathring{Y}$. [/mm] Zeige, dass dann $x [mm] \in \mathring{X \cap Y}$ [/mm] gilt, und folgere daraus, dass $x [mm] \not\in \partial(X \cap [/mm] Y)$ ist.
Damit hast du die Aussage dann per Kontraposition bewiesen.
LG Felix
|
|
|
|