Randwertaufgabe: Hilfe! < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 12:16 So 17.12.2006 | Autor: | patb |
Hallo,
ich habe hier eine ganz merkwürdige Aufgabe, die ich nicht wirklich verstehe, und ich würde mich über etwas Hilfe sehr freuen. Es geht um folgendes:
Die Modellierung der Auslenkung eines an seinen Enden fest gelagerten Balkens führt auf die (gewöhnliche) Randwertaufgabe
(1) -u''(x) - [mm] (1+x^{2})u(x) [/mm] = 1 für x [mm] \in [/mm] (-1,1), u(-1) = u(1) = 0
Hierbei beschreibt u(x) die Auslenkung des Balkens im Punkt x [mm] \in [/mm] [-1,1]. Wir behandeln hier zunächst eine 'abgespeckte' Version: gesucht ist eine Funktion u : [0,1] [mm] \to \IR [/mm] mit
(2) -u''(x) + u(x) = 1 für x [mm] \in [/mm] (0,1), u(0) = u(1) = 0
Das als Vorweg-Infos. Nun soll ich zeigen, dass
u(x) = 1 + [mm] \bruch{\cosh(1) - 1}{\sinh(1)} \sinh(x) [/mm] - [mm] \cosh(x)
[/mm]
eine exakte Lösung von (2) ist.
Icb stehe total auf dem Schlauch, ich weiß weder, was mit einer Auslenkung eines Balkens, der an den Enden fest gelagert ist, gemeint ist, noch wie genau u(x) aussieht, noch wie ich zeigen soll, dass das zuletzt angegebene eine exakte Lösung von (2) ist.
Ich wäre für jegliche Hilfe sehr dankbar!
(Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.)
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 12:46 So 17.12.2006 | Autor: | ullim |
> Hallo,
>
> ich habe hier eine ganz merkwürdige Aufgabe, die ich nicht
> wirklich verstehe, und ich würde mich über etwas Hilfe sehr
> freuen. Es geht um folgendes:
>
>
> Die Modellierung der Auslenkung eines an seinen Enden fest
> gelagerten Balkens führt auf die (gewöhnliche)
> Randwertaufgabe
>
> (1) -u''(x) - [mm](1+x^{2})u(x)[/mm] = 1 für x [mm]\in[/mm]
> (-1,1), u(-1) = u(1) = 0
>
> Hierbei beschreibt u(x) die Auslenkung des Balkens im Punkt
> x [mm]\in[/mm] [-1,1]. Wir behandeln hier zunächst eine
> 'abgespeckte' Version: gesucht ist eine Funktion u : [0,1]
> [mm]\to \IR[/mm] mit
>
> (2) -u''(x) + u(x) = 1 für x [mm]\in[/mm] (0,1), u(0)
> = u(1) = 0
>
>
> Das als Vorweg-Infos. Nun soll ich zeigen, dass
>
> u(x) = 1 + [mm]\bruch{\cosh(1) - 1}{\sinh(1)} \sinh(x)[/mm] -
> [mm]\cosh(x)[/mm]
>
> eine exakte Lösung von (2) ist.
>
> Icb stehe total auf dem Schlauch, ich weiß weder, was mit
> einer Auslenkung eines Balkens, der an den Enden fest
> gelagert ist, gemeint ist, noch wie genau u(x) aussieht,
> noch wie ich zeigen soll, dass das zuletzt angegebene eine
> exakte Lösung von (2) ist.
>
Das das gegebene u(x) eine exakte Lösung ist, kann man beweisen, indem man u''(x) bildet und in die DGL einsetzt. Erfüllt die Funktion auch noch die Randbedingungen, muss man nachprüfen, ist es eine exakte Lösung.
Mit der Auslenkung des Balkens ist seine Durchbiegung an beliebigen Punkten gemeint. Die DGL beschreibt, wie stark der Balken durchgebogen ist, also von der nicht durchgebogenen Form in jedem Punkt abweicht.
Anmerkung meinerseits: Für einen GK Mathematik Klasse 12 scheint mir diese Aufgabe etwas zu schwer, da meines Wissens Randwertprobleme von DGL erst im Mathe Studium 2./3. Semester behandel werden. Ist aber nur meine Meinung. Man muss sich auch noch was zur Eindeutigkeit der Lösung einfallen lassen, was wir hier gar nicht gemacht haben. Kannst ja mal Deinen Lehrer fragen.
> Ich wäre für jegliche Hilfe sehr dankbar!
>
>
> (Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.)
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 15:43 So 17.12.2006 | Autor: | patb |
> Das das gegebene u(x) eine exakte Lösung ist, kann man beweisen,
> indem man u''(x) bildet und in die DGL einsetzt.
Danke, das werde ich gleich einmal angehen.
> Mit der Auslenkung des Balkens ist seine Durchbiegung an beliebigen
> Punkten gemeint. Die DGL beschreibt, wie stark der Balken
> durchgebogen ist, also von der nicht durchgebogenen Form in jedem
> Punkt abweicht.
Ah natürlich, deswegen auch Randwertproblem, da der Balken an seinen Rändern ja fixiert ist, ist das so richtig?
> Anmerkung meinerseits: Für einen GK Mathematik Klasse 12 scheint mir
> diese Aufgabe etwas zu schwer, da meines Wissens Randwertprobleme
> von DGL erst im Mathe Studium 2./3. Semester behandel werden.
oh, das tut mir leid, mein Fehler... die Angabe in meiner Profil stimmt leider nicht ganz. Deine Vermutung ist ganz korrekt, dass es sich um eine Aufgabe aus dem Studium, 3. Semester handelt. Sorry, ich werde mein Profil nachher gleich ändern.
> Erfüllt die Funktion auch noch die Randbedingungen, muss man
> nachprüfen, ist es eine exakte Lösung.
Was sind denn die Randbedingungen und wie kann ich diese überprüfen?
Vielen Dank!
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 19:01 So 17.12.2006 | Autor: | ullim |
Hi,
die Randbedienungen sind
[mm] x\in(0,1) [/mm] und u(0)=u(1)=0
D.h., man setzt 0 und 1 in die gegebene Lösung u(x) ein und überprüft ob jeweils 0 heraus kommt.
mfg ullim
|
|
|
|