Rechenaufgabe < Ganzrationale Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 17:51 So 23.11.2008 | Autor: | Javier |
Hey leute,
ich habe eine Aufgabe zu machen unzwar geht es um folgendes:
also, eine nach unten geöffnete parabel hat die breite 4,5, die höhe zum höchsten punkt 3,6 m .
Wie berechne ich diese Aufgaben ??? Mit welchen Mitteln ??
Meine Aufgaben:
Gleichung: f(x) = [mm] -ax^2 [/mm] +b
1. Wie hoch liegt der Parabelscheitel über der Straße ????? Muss ich das mit der Scheitelpunktformel berechnen?? Wie bringe ich die in Scheitelpunktform?
2. Wie hoch darf ein 3m breiter Traktoranhänger mit Steckbalen höchstens sein, damit er durchfahren kann????
PS. die parabel soll eine ausfahrt darstellen !!!!
Bitte um Hilfe ! :(
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 18:12 So 23.11.2008 | Autor: | janmoda |
Hallo,
zeichne dir am besten in ein Koordinatensystem die Parabel ein, sodass der Scheitelpunkt auf der y-Achse liegt und die x-Achse an den Punkten -2,25 sowie +2,25 (entsprechend der Breite) geschnitten wird. Betrachten wir nun nur den oberhalb der x-Achse befindlichen Abschnitt des Graphen erkennen wir die Toreinfahrt wieder.
Nun gilt es die Formel der Parabel zu vervollständigen. die Form die du genannt hast ist schon einmal richtig:
[mm] f(x)=-ax^2+b
[/mm]
b ist uns durch die Höhe der Toreinfahrt gegeben. b=3,6
Um a zu errechnen setzten wir in die Gleichung einen bekannten Punkt ein und lösen nach a auf. Es bietet sich an einen Schnittpunkt mit der x-Achse zu gebrauchen, also (-2,25/0) oder (2,25/0). Ich werde im weiteren mit dem zweiten Punkt arbeiten.
Wir setzen diesen also in die Gleichung ein.
[mm] 0=-a*2,25^2+3,6
[/mm]
-3,6=-a*5,0625
[mm] \bruch{-3,6}{5,0625}=-a
[/mm]
[mm] \bruch{32}{45}=a
[/mm]
Die Gleichung unserer Parabel lautet also [mm] f(x)=-\bruch{32}{45}x^2+3,6
[/mm]
Die Antwort der ersten Frage ergibt sich aus der Aufgabenstellung. Der Scheitelpunkt ist der Höchstepunkt über Straße, also 3,6m
Zur Lösung der zweiten Frage brauchen wir unsere aufgestellte Gleichung der Parabel. Zeichne dir den LKW als Rechteck in deine Zeichnung ein. Er fährt mittig durch die Toreinfahrt d.h. bei 3m breite ist seine rechte Begrenzung auf der x-Achse bei -1,5, seine linke Begrenzung bei +1,5 einzuzeichnen. Die Frage die sich nun stellt, ist die nach der Höhe der Einfahrt an genau diesen beiden Punkten. Gebrauche die Gleichung!
Ich hoffe, dass ich dir ausreichend helfen konnte, falls nicht frag ein weiteres Mal.
besten Gruß janmoda
|
|
|
|