www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Englisch
  Status Grammatik
  Status Lektüre
  Status Korrekturlesen
  Status Übersetzung
  Status Sonstiges (Englisch)

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - Rechenoperationen mit Matrizen
Rechenoperationen mit Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Rechenoperationen mit Matrizen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:11 So 15.01.2006
Autor: Jackson

Hallo,
irgendwie ist es für mich wohl noch zu früh für Mathe, aber vielleicht kann mir jemand helfen.
Ich weiß, dass normalerweise die Matrizenmultiplikation nicht kommutativ ist, aber gibt es dabei eine Außnahme wenn ich eine symmetrische nxn-Matrix mit einer nxn-Matrix multipliziere, die nur aus Einsen besteht? Gibt es vielleicht bei symmetrischen Matrizen andere Regeln? Denn irgendwie komme ich nicht anders auf die Lösung!
Vielen Dank!

        
Bezug
Rechenoperationen mit Matrizen: nicht kommutativ
Status: (Antwort) fertig Status 
Datum: 11:25 So 15.01.2006
Autor: mathmetzsch

Hallo,

die Matrizenmultiplikation ist nicht kommutativ. Du kannst es gerne mal ausprobieren. Es wird i.A. nicht stimmen. Aber:

Bei (n,n)-Matrizen ist die Multiplikation assoziativ und es gilt das Distributivgesetz.

Wenn du damit die Einheitsmatrix meinst, mit der kannst du natürlich machen, was du willst. Man könnte sie hier als neutrales Element e bezeichnen. Es ist von daher egal, ob du e von rechts und links multiplizierst.

Viele Grüße
Daniel

Bezug
                
Bezug
Rechenoperationen mit Matrizen: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 15:26 So 15.01.2006
Autor: Jackson

Hi, danke erstmal für die Hilfe.
Ich meine aber nicht die Einheitsmatrix, dann wäre mir die Sache klar, ich meine eine (nxn)-Matrix, die nur +1 Einträge an jeder Stelle hat!
Also:  [mm] \pmat{ 1 & 1&... \\ 1&1 & ...\\...&...&... } [/mm]

Bezug
                        
Bezug
Rechenoperationen mit Matrizen: Antwort
Status: (Antwort) fertig Status 
Datum: 15:51 So 15.01.2006
Autor: taura

Hallo Jackson!

Leider sind die nicht kommutativ, Gegenbeispiel:

[mm] $\pmat{1 & 1 \\ 1 & 1}*\pmat{a & b \\ b & c}=\pmat{a+b & b+c \\ a+b & b+c}$ [/mm]

[mm] $\pmat{a & b \\ b & c}*\pmat{1 & 1 \\ 1 & 1}=\pmat{a+b & a+b \\ b+c & b+c}$ [/mm]

Gruß taura

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.englischraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]