Reduktion < Logik < Logik+Mengenlehre < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) überfällig | Datum: | 22:01 Fr 13.11.2015 | Autor: | mariem |
Hallo,
wir wissen dass eine Formel [mm] L_1x=f_1\land L_2 x=f_2 [/mm] in der Form Lx=f reduziert werden kann und dass diese Differentialgleichung eine Lösung hat.
Kann man auch eine Formel [mm] L_1x\ne g_1\land L_2 x\ne g_2 [/mm] in der Form Lx [mm] \ne [/mm] g reduzieren?
Kann man vielleicht folgendes machen?
[mm] L_1x\ne g_1 \Rightarrow \exists a_1 \neq [/mm] 0 : [mm] L_1 [/mm] x [mm] =g_1+a_1 [/mm]
[mm] L_2x\ne g_2 \Rightarrow \exists a_2 \neq [/mm] 0 : [mm] L_2 [/mm] x [mm] =g_2+a_2 [/mm]
Also haben wir zwei Differentialgleichungen. Man weiss dass man das in der Form Lx=G+a reduzieren kann.
Daraus folgt dass Lx [mm] \neq [/mm] G.
Ich bin mir mit den letzten Part nicht ganz sicher...
Könnt ihr mir sagen ob das richtig ist?
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 22:20 Mo 16.11.2015 | Autor: | matux |
$MATUXTEXT(ueberfaellige_frage)
|
|
|
|