Reell analytische Funktion < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 20:21 Mi 02.06.2004 | Autor: | lisa22 |
Hi liebes matheraum-team!
Ich habe eine kurze Frage an euch.
Ich weiss, dass eine Funktion f von R->R 2mal stetig diff'bar ist und das f+f''=0 gilt. Ich soll zeigen, dass jede solche Funktion reell analytisch ist.
Ich meine, zeigen zu koennen, dass eine soclhe Funktion auf jeden fall unendlich oft diff'bar sein muss....und ich habe mir ueberlegt, dass die trigonometrischen Fkt. das genau erfuellen, weiss aber nicht, ob es noch andere gibt, bzw wie ich diesen Beweis angehen soll...taylor entwicklung? waere euch dankbar fuer eine kleine hilfe.
lieben gruss.
lisa
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 21:11 Mi 02.06.2004 | Autor: | andreas |
hi
vielleicht mache ich mir das jetzt viel zu einfach.
aber du weißt ja, dass f, f' und f'' existieren sowie das f und f' differenzierbar sind.
aus der differentialgleichung f + f'' = 0 erhältst du aber f'' = -f. da aber für beliebige differnzierbare funktionen g: [m] \mathbb{R} \to \mathbb{R} [/m] gilt, dass auch -g differnzierbar ist, ist f'' auch wieder differnzierbar und f''' = (f'')' = (-f)' = -f'.
daraus folgt aber wieder (f'''') = (f''')' = (-f')' = -f'' = f.
und so weiter.
induktiv kannst du dann damit zeigen, dass die funktion auf der reellen achse beliebig oft differenzerbar ist.
das problem ist nun noch zu zeigen, dass eine reihenentwichlung tatsächlich auch gegen diese funtion konvergiert (auch [m] f(x) = \exp(-\frac{1}{x^2}) \text{ für } x \ne 0 \text{ und } f(0) = 0 [/m] ist ja beliebig oft differnzierbar, die entwicklung im nullpunkt liefert aber die konstnte nullfunktion)!
die überlegung, dass der lösungsraum genau die trigonometrischen funktionen beinhaltet ist miener ansicht nach schon richtig. du hast hier eine differntialgleichung zweiter ordnung und deren lösungsraum ist ein zweidimensionaler unterraum der [m] C^2( \mathbb{R}, \mathbb{R}) [/m] funktionen, z.b. mit der basis [m] \{ \sin(x), \cos(x) \} [/m].
andreas
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 23:50 Mi 02.06.2004 | Autor: | lisa22 |
hi andreas!
danke fuer deine hilfe. ich habe, wie gesagt, die sache mit der unendlichen differenzierbarkeit schon gezeigt, das war ja nicht so chwer. woran es haengt, ist der formale nachweis, dass die gegebenen eigenschaften entweder nur auf sin / cos zutreffen oder dass ich zeige, dass aus den bekannten eigenschaften folgt, dass fuer jedes f, das diese voraussetzungen erfuellt gilt: Sei [mm] I \subset \IR [/mm] offenes Intervall und es gebe M>0, r>0 so dass fuer jedes [mm] x \in I, n \in N gilt \left| f^(^n^) \right|<= n!\bruch{M}{r^n} [/mm]
vielen dank.
lisa
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 01:21 Do 03.06.2004 | Autor: | andreas |
hi lisa
wenn du dich noch nicht soviel mit differntialgleichungen auseinandergestzt hast würde ich das vielleicht so probieren:
die funktion f(x) lässt sich im punkt [m] x_0 [/m] in eine potenzreihe mit konvergenzradius (mindestens) R entwickeln, wenn das (lagrange) restgleid [m] \dfrac{f^{(n+1)}(\xi)}{(n+1)!}(x-x_0)^{n+1} \; (x \in [x_0 - R, x_0 + R], \; \xi \in [x_0, x] \text{ oder } \xi \in [x, x_0] ) [/m] für n gegen unendlich gegen null konvergiert.
sei nun [m] x_0 \in \mathbb{R} [/m] beliebig, [m] 0 < R \leq 1 [/m]. dann gilt für f und f' [m] \exists \, C > 0 \; \forall \, x \in [x_0 - R, x_0 + R]: ( |f(x)| \leq C \; \wedge \; |f'(x)| \leq C ) [/m], da f und f' stetige funktionen (da differnezierbar) auf einer kompakten menge sind (satz von weierstrass) und damit nach obiger rekursionsformel für alle ableitungen [m] |f^{(n)}(x) | \leq C \; (n \in \mathbb{N}) \cup \{0\}, \; x \in [x_0 - R, x_0 + R])[/m].
damit lässt sich dann der betrag obigen restglieds abschätzen:
[m] \left| \frac{f^{(n+1)}(\xi)}{(n+1)!}(x-x_0)^{n+1} \right| = \frac{|f^{(n+1)}(\xi)|}{(n+1)!} |x-x_0|^{n+1} \leq \frac{C}{(n+1)!} R^{n+1} \leq \frac{C}{(n+1)!} 1^{n+1} = \frac{C}{(n+1)!} \stackrel{n \to \infty}{\longrightarrow} 0 [/m]
andreas
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 14:40 Do 03.06.2004 | Autor: | lisa22 |
vielen dank andreas. ich denke, ich habe es jetzt verstanden und werde das alles noch etwas ausarbeiten.
liebe gruesse
lisa!
|
|
|
|