www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Englisch
  Status Grammatik
  Status Lektüre
  Status Korrekturlesen
  Status Übersetzung
  Status Sonstiges (Englisch)

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Reihe Konvergent/Divergent?
Reihe Konvergent/Divergent? < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Reihe Konvergent/Divergent?: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 22:24 Do 13.12.2007
Autor: MacChevap

Aufgabe
Ist die Reihe [mm] \summe_{n=1}^{\infty}\bruch{n-1}{n²} [/mm] konvergent oder divergent? Beweisen Sie Ihre Behauptung.

Mein Ansatz [mm] \summe_{n=1}^{\infty}\bruch{n-1}{n²} [/mm]

=>

[mm] =\summe_{n=1}^{\infty}\bruch{1}{n} +\summe_{n=1}^{\infty}\bruch{-1}{n²} [/mm]

die erste Summe divergiert (Minorante Harmonische Reihe) die zweite Summe konvergiert (=Harmonische Reihe) also insgesammt, divergent ?

        
Bezug
Reihe Konvergent/Divergent?: Antwort
Status: (Antwort) fertig Status 
Datum: 22:26 Do 13.12.2007
Autor: max3000

Richtig

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.englischraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]