Reihe für 1/sin(z) < komplex < Analysis < Hochschule < Mathe < Vorhilfe
|
Eigentlich möchte ich das Residuum von [mm] \[\bruch{1}{z^{2}sin(z)}\] [/mm] wissen, aber am einfachsten geht das mit der Laurentreihe für [mm] \[\bruch{1}{sin(z)}\]. [/mm] Wie bestimme ich diese, der Kehrwert der Reihe für den Sinus ist ja nicht die Summe der Kehrwerte. Wie finde ich hier die Laurentreihe, wo ich doch die geometrische Reihe eher weniger gut anwenden kann?
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 12:05 Mo 28.05.2012 | Autor: | felixf |
Moin!
> Eigentlich möchte ich das Residuum von
> [mm]\[\bruch{1}{z^{2}sin(z)}\][/mm] wissen, aber am einfachsten geht
> das mit der Laurentreihe für [mm]\[\bruch{1}{sin(z)}\].[/mm] Wie
Ich nehe mal an, es geht hier um den Entwicklungspunkt $z = 0$.
> bestimme ich diese, der Kehrwert der Reihe für den Sinus
> ist ja nicht die Summe der Kehrwerte. Wie finde ich hier
> die Laurentreihe, wo ich doch die geometrische Reihe eher
> weniger gut anwenden kann?
Hier ist es ja nicht so, dass du die ganze Reihenentwicklung wissen willst, sondern nur deren Anfang. Damit ist das Problem dann auch gleich viel einfacher :)
Die Sinusfunktion hat in $z = 0$ ja eine einfache Nullstelle. Damit hat [mm] $z^2 \sin(z)$ [/mm] eine dreifache Nullstelle. Die meromorphe Funktion [mm] $\frac{1}{z^2 \sin(z)}$ [/mm] hat damit eine dreifache Polstelle in $z = 0$. Die Laurententwicklung faengt also an mit [mm] $a_3 z^{-3} [/mm] + [mm] a_4 z^{-4} [/mm] + ...$.
Daran sieht man schon gleich: das Residuum ist 0.
Allgemeiner: du willst den Anfang der Laurentreihe von [mm] $\frac{1}{f(z) g(z)}$ [/mm] im Entwicklungspunkt [mm] $z_0$ [/mm] bestimmen. Dazu bestimmst du erst die Potenzreihen $f(z) = [mm] \sum_{i=n}^\infty a_i [/mm] (z - [mm] z_0)^i$ [/mm] und $g(z) = [mm] \sum_{j=m}^\infty b_j [/mm] (z - [mm] z_0)^j$. [/mm] Hierbei soll [mm] $a_n \neq [/mm] 0 [mm] \neq b_m$ [/mm] sein.
Ist nun [mm] $\frac{1}{f(z) g(z)} [/mm] = [mm] \sum_{k\in\IZ} c_k [/mm] (z - [mm] z_0)^k$, [/mm] so siehst du gleich, dass [mm] $c_k [/mm] = 0$ sein muss fuer $k < -n - m$. Du kannst beide Seiten naemlich mit $(z - [mm] z_0)^{n + m}$ [/mm] multiplizieren und hast auf der linken Seite dann 1 durch eine holomorphe Funktion, die in [mm] $z_0$ [/mm] keine Nullstelle hat. Damit muss auf der rechten Seite ebenfalls eine holomorphe Funktion stehen, womit du auf der rechten Seite [mm] $\sum_{k=-n-m}^\infty c_k [/mm] (z - [mm] z_0)^k$ [/mm] stehen hast.
Ausmultiplizieren liefert nun $1 = [mm] \left( a_n (z - z_0)^n + a_{n+1} (z - z_0)^{n+1} + ... \right) \left( b_m (z - z_0)^m + b_{m+1} (z - z_0)^{m+1} + ... \right) \left( ...+ c_1 (z - z_0)^1 + c_0 + c_{-1} (z - z_0)^{-1} + ... \right) [/mm] = [mm] \left( a_n b_m (z - z_0)^{n+m} + (a_n b_{m+1} + a_{n+1} b_m) (z - z_0)^{n+m+1} + ... \right) \left( c_{-n-m} (z - z_0)^{-n-m} + c_{-n-m+1} (z - z_0)^{-n-m+1} + ... \right) [/mm] = [mm] a_n b_m c_{-n-m} [/mm] + [mm] (a_n b_m c_{-n-m+1} a_n b_{m+1} b_m c_{-n-m} [/mm] + [mm] a_{n+1} b_m c_{-n-m}) [/mm] (z - [mm] z_0) [/mm] + ...$ (hier habe ich hoehere Potenzen jeweils weggelassen).
Jetzt kannst du Koeffizientenvergleich machen: daraus bekommst du Gleichungen, mit denen du zuerst [mm] $c_{-n-m}$, [/mm] dann [mm] $c_{-n-m+1}$, [/mm] und dann immer so weiter der Reihe nach die Koeffizienten von der Ergebnisreihe bestimmen kannst. Jeweils nur endlich viele, aber so viele wie du brauchst/willst.
Hiermit solltest du auch alle anderen Residuen von [mm] $\frac{1}{z^2 \sin(z)}$ [/mm] bestimmen koennen.
LG Felix
|
|
|
|