Relationen < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 21:29 Do 05.01.2006 | Autor: | Waltraud |
Aufgabe | a) Sind die relationen R={(1,2),(2,3),(4,5),(5,2)} in der Menge A= {1,2,3,4,5} und K = [mm] \{(x,y)/x²+y²=25 und x \in [0,5], y \in [-5,5]\} [/mm] Funktionen? Sind die Umkehrrelationen K*und R*Funktionen? |
Hallo Mathefreeks, ich habe leider keine Ahnung, was ich bei dieser Aufgabe machen soll. Ich bitte darum um ein paar Lösungsvorschläge oder vielleicht Ansätze. Vielen Lieben Dank Juliane
|
|
|
|
Hi, Waltraud,
> a) Sind die Relationen R={(1,2),(2,3),(4,5),(5,2)} in der
> Menge A= {1,2,3,4,5} und K = [mm]\{(x,y)/x²+y²=25 und x \in [0,5], y \in [-5,5]\}[/mm]
> Funktionen? Sind die Umkehrrelationen K*und R*Funktionen?
> Hallo Mathefreeks, ich habe leider keine Ahnung, was ich
> bei dieser Aufgabe machen soll. Ich bitte darum um ein paar
> Lösungsvorschläge oder vielleicht Ansätze.
Eine Relation ist Funktion, wenn zu jedem x aus der Definitionsmenge D
GENAU ein y-Wert existiert, besonders also nicht zu EINEM x-Wert ZWEI oder noch mehr y-Werte gehören.
Bei Deiner Relation R ist das der Fall, d.h. hier handelt sich's um eine Funktion.
Die Umkehrrelation entsteht aus einer Relation durch Vertauschen von x und y:
R* = [mm] \{(2,1); (3,2); (5,4); (2;5)\}
[/mm]
Dies ist sicher keine Funktion, da dem x-Wert 2 nun zwei verschiedene y-Werte zugeordnet sind.
Nun zur Relation K:
Es handelt sich dabei um einen Halbkreis mit Radius 5 (der Gesamtkreis hätte den Mittelpunkt M(0;0)), rechts von der y-Achse.
Z.B. für x=0 ergeben sich die y-Werte y=5 und y=-5.
Daher ist K keine Funktion.
K* entsteht aus K durch Vertauschen von x und y, bzw. graphisch durch Spiegelung an der Winkelhalbierenden des I. und III.Quadranten.
Spiegelt man den oben beschriebenen Halbkreis an der Winkelhalbierenden, entsteht ein neuer Halbkreis, der zwischen x=-5 und x=5 oberhalb der x-Achse liegt. Dies ist ohne Zweifel ein Funktionsgraph!
K* ist also Funktion.
mfG!
Zwerglein
|
|
|
|