www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Englisch
  Status Grammatik
  Status Lektüre
  Status Korrekturlesen
  Status Übersetzung
  Status Sonstiges (Englisch)

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Relationen" - Relationen
Relationen < Relationen < Diskrete Mathematik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Relationen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Relationen: richtigkeit
Status: (Frage) beantwortet Status 
Datum: 23:56 Do 18.01.2007
Autor: Haase

Aufgabe
Frage:
Geben Sie ein Beispiel für eine Relation, die transitiv,aber nicht symmetrisch ist an.

Hi Allerseits,

Lösung:
R={(a,b),(b,a),(a,c)}
Ist das so richtig?

Vielen Dank im Voraus
Gruß Haase

        
Bezug
Relationen: Antwort
Status: (Antwort) fertig Status 
Datum: 00:03 Fr 19.01.2007
Autor: andreas

hi

>  R={(a,b),(b,a),(a,c)}

deine relation ist meiner meinung nach nicht transitiv, da $(a, b) [mm] \in [/mm] R [mm] \; \wedge \; [/mm] (b, a) [mm] \in [/mm] R$, aber $(a, a) [mm] \not\in [/mm] R$?
so wie ich das sehe, gibt es eine relation auf einer zwei-elemetigen menge, die diese eigenschaften erfüllt. probiere doch mal alle durch und schaue, ob du eine findet, die die gewünschten eigenschaften erfüllt.


grüße
andreas

Bezug
                
Bezug
Relationen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:35 Fr 19.01.2007
Autor: Haase

achso. stimmt, so müsste es dann gehen:
M={a,b,c}, R<=MxM, R={(a,b),(b,a),(a,a),(b,c),(a,c),(b,b)}
den transitiv, da alle xRy,yRz->xRz gilt
und nicht symmetrisch, da (c,b) fehlt

Wäre nett wenn ihr noch ein Beispiel angiebt.
Gruß Haase

Bezug
                        
Bezug
Relationen: Antwort
Status: (Antwort) fertig Status 
Datum: 00:32 Sa 20.01.2007
Autor: andreas

hi

ich denke, dass auch das von dir in der ersten version dieser frage angegebene beispiel $ [mm] R=\{(a,b),(b,c),(a,c)\}$ [/mm] das gewünschte leistet. das missverständniss entstsand wohl durch einen tippfehler.


grüße
andreas

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Relationen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.englischraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]