www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Englisch
  Status Grammatik
  Status Lektüre
  Status Korrekturlesen
  Status Übersetzung
  Status Sonstiges (Englisch)

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Komplexe Analysis" - Residuensatz
Residuensatz < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Residuensatz: Fehler in Musterlösung?
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:54 So 25.03.2012
Autor: Teflonkabel

€€dit:
sry, habs nun kapiert - hoffe die Frage wurde noch nicht gelesen ^^

Mir fehlt eindeutig die Möglichkeit seine bisher unbearbeitete Frage wieder zu löschen :-(

Sry @ll......

        
Bezug
Residuensatz: bitte nicht kaputteditieren
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:45 So 25.03.2012
Autor: Marc

Hallo Teflonkabel,

> €€dit:
>  sry, habs nun kapiert - hoffe die Frage wurde noch nicht
> gelesen ^^
>  
> Mir fehlt eindeutig die Möglichkeit seine bisher
> unbearbeitete Frage wieder zu löschen :-(

Dieser Wunsch stößt sich an der Offenheit dieses Forums, daher möchte ich dich bitten, auch unbeantwortete Fragen nicht nachträglich kaputtzueditieren, sondern einfach in einer neuen Mitteilung erkennen zu geben, dass du nicht mehr an einer Antwort interessiert bist. Solltest du in Zukunft von einer Frage denken, dass du sie später möglicherweise gelöscht haben willst (weil sie entweder noch nicht beantwortet wurde oder du eine Antwort erhalten hast), dann stelle diese Frage bitte erst gar nicht (hier).

Viele Grüße
Marc

Bezug
                
Bezug
Residuensatz: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:55 So 25.03.2012
Autor: Teflonkabel

Natürlich würde ich nie etwas gelöscht haben wollen, was andere schon im Ansatz bearbeitet haben, sowas gehört sich nirgends.

Aber die Funktion, etwas noch so lange richtig editieren/löschen zu können, solange sich noch niemand damit beschäftigt hat/es gerade bearbeitet/reserviert hat, hätte ich doch praktisch gefunden :-)

Aber entschuldige wie gesagt die Umstände - ich dachte, durch mein kaputteditieren würde ich eben für alle die geringsten Umstände bereiten, da so niemand mehr etwas umsonst lesen muss - außer eben mein kurzes Statement.

Beste Grüße

Bezug
                        
Bezug
Residuensatz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 06:41 Mo 26.03.2012
Autor: Teflonkabel

Aufgabe
[mm] $\bruch{d}{dn}ne^{-nx^2}=e^{-nx^2}-n^2 x^2 e^{-nx^2} [/mm]

Guten Morgen beisammen,

nun, jetzt scheine ich tatsächlich auf einen Fehler in der Musterlösung gestoßen zu sein, obwohl ich die Aufgabe schonmal gemacht hatte Oo
Kann also auch sein, dass es am frühen (+zeitverschobenen) Morgen liegt ^^
[An der eigentlichen Aussage, dass dies alles kleiner 0 ist, ändert sich jedoch ja nichts für $n,x>1$]

Kann dies jemand bestätigen?
(Der Fehler war wohl zu trivial, als hätte ihn jemand ausbessern wollen)

Danke :-)
lG



Bezug
                                
Bezug
Residuensatz: Antwort
Status: (Antwort) fertig Status 
Datum: 08:15 Mo 26.03.2012
Autor: Marc

Hallo Teflonkabel,

> [mm]$\bruch{d}{dn}ne^{-nx^2}=e^{-nx^2}-n^2 x^2 e^{-nx^2}[/mm]
>  Guten
> Morgen beisammen,
>  
> nun, jetzt scheine ich tatsächlich auf einen Fehler in der
> Musterlösung gestoßen zu sein, obwohl ich die Aufgabe
> schonmal gemacht hatte Oo

Laut deiner exakt wiedergegebenen Aufgabenstellung, die du in den Kasten eingetragen hast, ist ja eine Gleichung zu lösen.
Die Gleichung ist wahr für [mm] $n\in\{0,1\}$ [/mm] oder $x=0$.

Viele Grüße
Marc

Bezug
                                        
Bezug
Residuensatz: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:00 Mo 26.03.2012
Autor: Teflonkabel

Danke Marc,

> Laut deiner exakt wiedergegebenen Aufgabenstellung

der Wink mit dem Zaunpfahl wurde verstanden.
Hatte das Feld eher für die Schlüsselbegriffe meiner Frage mißbraucht.
Sollte zukünftig bei Nebenfragen dieses Feld wohl einfach leer lassen.

Danke auch für die Bestätigung meiner Vermutung - also sind meine Ableitkenntnisse doch nicht von vorgestern ^^
Hier werden ja wie in meiner Beschreibung erwähnt Rückschlüsse für $n,x>1$ gezogen.

Also Danke
und einen schönen Tag noch
(bei mir ein Lern-Tag, also vielleicht bis später ^^)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.englischraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]