www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Englisch
  Status Grammatik
  Status Lektüre
  Status Korrekturlesen
  Status Übersetzung
  Status Sonstiges (Englisch)

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Analysis-Sonstiges" - Roboterbein (Kniewinkel?)
Roboterbein (Kniewinkel?) < Sonstiges < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Roboterbein (Kniewinkel?): Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:37 Sa 22.03.2008
Autor: T-Mow

Aufgabe
Hallo euch allen...

habe ein kleines Problem...ich finde auch keine richtigen Formeln im Internet:

[Dateianhang nicht öffentlich]

Könnte mir jemand vielleicht helfen, wie ich den fehlenden delta-Winkel berechnen kann?




Nur zur Info:

Ich bin dabe einen Roboter (mit 6 Beinen) zu programmieren.
Die Beine haben 2 "Gelenke" (Servos).
Nun soll der Roboter aufstehen aber ohne dass sich die Füsse in irgendeine Richtung bewegen.
Dazu muss sich der Kniewinkel (delta) abhängig vom Hüftwinkel (gamma) ändern und daran scheitere ich schon :-/

b = Höhe des Roboters vom Boden
c = Oberschenkel
d = Unterschenkel

Danke schonmal ... und schöne Feiertage noch :-)

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Dateianhänge:
Anhang Nr. 1 (Typ: JPG) [nicht öffentlich]
        
Bezug
Roboterbein (Kniewinkel?): Antwort
Status: (Antwort) fertig Status 
Datum: 15:01 Sa 22.03.2008
Autor: MathePower

Hallo T-Mow,

[willkommenmr]

> Hallo euch allen...
>  
> habe ein kleines Problem...ich finde auch keine richtigen
> Formeln im Internet:
>  
> [Dateianhang nicht öffentlich]
>  
> Könnte mir jemand vielleicht helfen, wie ich den fehlenden
> delta-Winkel berechnen kann?
>  
>
>
>
> Nur zur Info:
>  
> Ich bin dabe einen Roboter (mit 6 Beinen) zu
> programmieren.
>  Die Beine haben 2 "Gelenke" (Servos).
>  Nun soll der Roboter aufstehen aber ohne dass sich die
> Füsse in irgendeine Richtung bewegen.
>  Dazu muss sich der Kniewinkel abhängig vom Hüftwinkel
> ändern und daran scheitere ich schon :-/
>

In einem Viereck gilt: Die Summe der 4 Innenwinkel beträgt
[mm]360^{\circ}[/mm].

>
> Danke schonmal ... und schöne Feiertage noch :-)
>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.

Gruß
MathePower

Bezug
                
Bezug
Roboterbein (Kniewinkel?): Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:15 Sa 22.03.2008
Autor: T-Mow

Aufgabe
Alles klar, soweit so gut, das wusste ich auch :-).

Mir fehlen doch aber 2 Winkel alpha und delta, wobei mich nur delta interessiert (den anderen könnte ich mir dann zur Not auch herleiten ;-))

Sitze schon seit heute morgen daran...habe erst mit einem Dreieck begonnen und bin dann auf das Trapez gekommen, Kann also sein dass ich gerade eine kleine Denkblockade habe und die Lösung näher ist als ich denke.

Bezug
                        
Bezug
Roboterbein (Kniewinkel?): Antwort
Status: (Antwort) fertig Status 
Datum: 15:37 Sa 22.03.2008
Autor: MathePower

Hallo T-Mow,

> Alles klar, soweit so gut, das wusste ich auch :-).
>  
> Mir fehlen doch aber 2 Winkel alpha und delta, wobei mich
> nur delta interessiert (den anderen könnte ich mir dann zur
> Not auch herleiten ;-))
>  Sitze schon seit heute morgen daran...habe erst mit einem
> Dreieck begonnen und bin dann auf das Trapez gekommen, Kann
> also sein dass ich gerade eine kleine Denkblockade habe und
> die Lösung näher ist als ich denke.

Überlege Dir, wie sich die Seite a zusammensetzt.

Damit bekommst Du dann nämlich den Winkel [mm]\alpha[/mm] heraus.

Dann ergibt sich [mm]\delta=360^{\circ}-\alpha-\beta-\gamma[/mm]

Gruß
MathePower

Bezug
                                
Bezug
Roboterbein (Kniewinkel?): Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:01 Sa 22.03.2008
Autor: T-Mow

Aufgabe
Ok, da hat sich wohl der Fehlerteufel eingeschlichen :-/
habe mich vertan.

Es ist nämlich kein Trapez sondern ein Viereck, b und d sind nicht parallel.

Oder haben sie das schon gemerkt und die Lösung ist immernoch so simpel, dass ich einfach zu blöd dafür bin (momentan)?

Bezug
                                        
Bezug
Roboterbein (Kniewinkel?): Antwort
Status: (Antwort) fertig Status 
Datum: 16:12 Sa 22.03.2008
Autor: MathePower

Hallo T-Mow,

> Ok, da hat sich wohl der Fehlerteufel eingeschlichen :-/
>  habe mich vertan.
>  Es ist nämlich kein Trapez sondern ein Viereck, b und d
> sind nicht parallel.
>  
> Oder haben sie das schon gemerkt und die Lösung ist
> immernoch so simpel, dass ich einfach zu blöd dafür bin
> (momentan)?

Aus der Zeichnung ist das ja ersichtlich, daß b und d nicht parallel sind.

Gruß
MathePower

Bezug
        
Bezug
Roboterbein (Kniewinkel?): Antwort
Status: (Antwort) fertig Status 
Datum: 15:54 Sa 22.03.2008
Autor: Mathehelfer

Hi T-Mow,

im Grunde genommen ist die Aufgabe gar nicht so schwer (wenn die Lösung so richtig ist, wie ich denke). Man braucht nur ein wenig Trigonometrie: Wegen der Winkelsumme von 360° im Viereck ist bekannt:

[mm]\delta =360°-90°-\gamma -\alpha = 270°-\gamma -\alpha[/mm].

Somit muss nur noch [mm]\alpha[/mm] berechnet werden. Für die (neue) Seite e gilt:
[mm]\sin (\gamma )=\bruch{e}{c}[/mm]. Nun kommt das rechtwinklige Dreieck mit der Seite d ins Spiel, dessen Ankathete dem Wert a-e entspricht:

[mm]\cos (\alpha )=\bruch{a-e}{d}[/mm].

Umformen und einsetzen liefert:

[mm]\delta = 270°-\gamma -\arccos (\bruch{a-c \sin (\gamma )}{d})[/mm].

Damit haben wir mithilfe von [mm]a, c, d, \gamma[/mm] den Winkel [mm]\delta[/mm] ermittelt. Wenn's noch Fragen gibt, kannst du dich gerne melden! Hoffe, ich konnte weiterhelfen!
[Dateianhang nicht öffentlich]

Dateianhänge:
Anhang Nr. 1 (Typ: gif) [nicht öffentlich]
Bezug
                
Bezug
Roboterbein (Kniewinkel?): Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:37 Sa 22.03.2008
Autor: T-Mow

Aufgabe
Danke :-)

Scheint zu klappen, brauchte ein wenig es zu programmieren, kenne mich mit dieser Sprache nochnicht so gut aus.

Nochmals großen Dank

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.englischraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]