Rotationskörper < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 19:29 Fr 02.03.2012 | Autor: | BigFudge |
Aufgabe | Die gefärbte Fläche rotiert um die x-Achse. Bestimmen Sie das Volumen das durch die Rotation erzeugten Drehkörpers.
a) Fläche zwischen [mm] f(x)=\wurzel{x} [/mm] und g(x)=2 [0;1] |
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
Man berechnet das Volumen eigentlich durch [mm] \pi*(\integral_{0}^{4}{g^2(x) dx}-\integral_{0}^{4}{f^2(x) dx})
[/mm]
Meine 1. Idee war allerdings, dass man [mm] \wurzel{x} [/mm] um 2 nach unten verschiebt, sodass die Fläche die mit g(x)=2 gebildet wird, mit der x-Achse gebildet wird. Dadurch erhält man die neue Funktion [mm] n(x)=\wurzel{x} [/mm] -2.
Nimmt man aber diese Funktion anstatt der beiden anderen, ist das Ergebnis ein anderes.
Meine Frage lautet jetzt: Wieso erhält man 2 verschieden Ergebnis, obwohl die Fläche, die man rotieren lässt, genau gleich ist?
|
|
|
|
> Die gefärbte Fläche rotiert um die x-Achse. Bestimmen Sie
> das Volumen das durch die Rotation erzeugten Drehkörpers.
> a) Fläche zwischen [mm]f(x)=\wurzel{x}[/mm] und g(x)=2 [0;1]
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
> Man berechnet das Volumen eigentlich durch
> [mm]\pi*(\integral_{0}^{4}{g^2(x) dx}-\integral_{0}^{4}{f^2(x) dx})[/mm]
>
> Meine 1. Idee war allerdings, dass man [mm]\wurzel{x}[/mm] um 2 nach
> unten verschiebt, sodass die Fläche die mit g(x)=2
> gebildet wird, mit der x-Achse gebildet wird. Dadurch
> erhält man die neue Funktion [mm]n(x)=\wurzel{x}[/mm] -2.
> Nimmt man aber diese Funktion anstatt der beiden anderen,
> ist das Ergebnis ein anderes.
> Meine Frage lautet jetzt: Wieso erhält man 2 verschieden
> Ergebnis, obwohl die Fläche, die man rotieren lässt,
> genau gleich ist?
Die Fläche bleibt gleich, aber der Radius, mit dem sie um die x-Achse rotiert, ändert sich. Und das Volumen wird umso größer, je größer der Radius ist.
|
|
|
|