www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Englisch
  Status Grammatik
  Status Lektüre
  Status Korrekturlesen
  Status Übersetzung
  Status Sonstiges (Englisch)

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Abbildungen" - Sätze beweisen
Sätze beweisen < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Sätze beweisen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:43 Mo 01.11.2010
Autor: Mandy_90

Aufgabe
Zeigen Sie:Ist f:X-->Y eine Abbildung, [mm] A_{1},A_{2} \subset [/mm] X, [mm] B_{1},B_{2} \subset [/mm] Y, so gilt:

a) [mm] f^{-1}(B_{1} \cap B_{2})=f^{-1}(B_{1}) \cap f^{-1}(B_{2}) [/mm]

b) [mm] f^{-1}(B_{1} [/mm] - [mm] B_{2})=f^{-1}(B_{1}) [/mm] - [mm] f^{-1}(B_{2}) [/mm]

Guten Abend^^

Ich habe einige Schwierigkeiten mit dieser Aufgabe und hoffe mir kann jemand helfen.
Zunächst, mit  [mm] f^{-1} [/mm] ist doch die Umkehrabbildung gemeint oder?
Also wäre [mm] f^{-1}:Y-->X. [/mm]
So,ich hab jetzt zwar einen Ansatz,aber komme nicht sehr weit.
Die Idee ist,dass ich zeige,dass wenn a ein Element aus [mm] f^{-1}(B_{1} \cap B_{2}) [/mm] ist, auch ein Element aus [mm] f^{-1}(B_{1}) \cap f^{-1}(B_{2}) [/mm] ist.
Dann fange ich so an:
a [mm] \in f^{-1}(B_{1} \cap B_{2}) [/mm]
[mm] \Rightarrow [/mm] a [mm] \in f^{-1}(B_{1}) [/mm] und a [mm] \in f^{-1}(B_{2}) [/mm]
[mm] \Rightarrow [/mm] a [mm] \in f^{-1}(B_{1}) \cap [/mm] a [mm] \in f^{-1}(B_{2}) [/mm]

Aber irgendwie scheint mir das nicht richtig zu sein,kann mir jemand weiterhelfen?

Vielen Dank
lg

        
Bezug
Sätze beweisen: Antwort
Status: (Antwort) fertig Status 
Datum: 17:56 Mo 01.11.2010
Autor: fred97


> Zeigen Sie:Ist f:X-->Y eine Abbildung, [mm]A_{1},A_{2} \subset[/mm]
> X, [mm]B_{1},B_{2} \subset[/mm] Y, so gilt:
>  
> a) [mm]f^{-1}(B_{1} \cap B_{2})=f^{-1}(B_{1}) \cap f^{-1}(B_{2})[/mm]
>  
> b) [mm]f^{-1}(B_{1}[/mm] - [mm]B_{2})=f^{-1}(B_{1})[/mm] - [mm]f^{-1}(B_{2})[/mm]
>  Guten Abend^^
>  
> Ich habe einige Schwierigkeiten mit dieser Aufgabe und
> hoffe mir kann jemand helfen.
>  Zunächst, mit  [mm]f^{-1}[/mm] ist doch die Umkehrabbildung
> gemeint oder?


Nein ! Für B [mm] \subset [/mm] Y ist

            [mm] $f^{-1}(B):= \{x \in X: f(x) \in B \}$ [/mm]



>  Also wäre [mm]f^{-1}:Y-->X.[/mm]
>  So,ich hab jetzt zwar einen Ansatz,aber komme nicht sehr
> weit.
>  Die Idee ist,dass ich zeige,dass wenn a ein Element aus
> [mm]f^{-1}(B_{1} \cap B_{2})[/mm] ist, auch ein Element aus
> [mm]f^{-1}(B_{1}) \cap f^{-1}(B_{2})[/mm] ist.
>  Dann fange ich so an:
>  a [mm]\in f^{-1}(B_{1} \cap B_{2})[/mm]

>  [mm]\Rightarrow[/mm] a [mm]\in f^{-1}(B_{1})[/mm]
> und a [mm]\in f^{-1}(B_{2})[/mm]
>  [mm]\Rightarrow[/mm] a [mm]\in f^{-1}(B_{1}) \cap[/mm]
> a [mm]\in f^{-1}(B_{2})[/mm]
>  
> Aber irgendwie scheint mir das nicht richtig zu sein,kann
> mir jemand weiterhelfen?
>
> Vielen Dank
>  lg


Bezug
                
Bezug
Sätze beweisen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:15 Mo 01.11.2010
Autor: Mandy_90


> > Ich habe einige Schwierigkeiten mit dieser Aufgabe und
> > hoffe mir kann jemand helfen.
>  >  Zunächst, mit  [mm]f^{-1}[/mm] ist doch die Umkehrabbildung
> > gemeint oder?
>  
>
> Nein ! Für B [mm]\subset[/mm] Y ist
>  
> [mm]f^{-1}(B):= \{x \in X: f(x) \in B \}[/mm]
>  

Ok,ich hab mal versucht die a) zu beweisen:

[mm] f^{-1}(B_{1}):= \{x \in X: f(x) \in B_{1} \} [/mm]
[mm] f^{-1}(B_{2}):= \{x \in X: f(x) \in B_{2} \} [/mm]

[mm] f^{-1}(B_{1} \cap B_{2}):= \{x \in X: f(x) \in B_{1} \cap B_{2} \} [/mm]
Beweis:
[mm] f^{-1}(B_{1}) \cap f^{-1}(B_{2})=\{x \in X: f(x) \in B_{1} \} \cap \{x \in X: f(x) \in B_{2} \}=\{x \in X: f(x) \in B_{1} und B_{2} \}=\{x \in X: f(x) \in B_{1} \cap B_{2} \}. [/mm]

Ist es damit bewiesen?

lg

Bezug
                        
Bezug
Sätze beweisen: Antwort
Status: (Antwort) fertig Status 
Datum: 20:42 Mo 01.11.2010
Autor: felixf

Moin!

> > > Ich habe einige Schwierigkeiten mit dieser Aufgabe und
> > > hoffe mir kann jemand helfen.
>  >  >  Zunächst, mit  [mm]f^{-1}[/mm] ist doch die Umkehrabbildung
> > > gemeint oder?
>  >  
> >
> > Nein ! Für B [mm]\subset[/mm] Y ist
>  >  
> > [mm]f^{-1}(B):= \{x \in X: f(x) \in B \}[/mm]
>  >  
> Ok,ich hab mal versucht die a) zu beweisen:
>  
> [mm]f^{-1}(B_{1}):= \{x \in X: f(x) \in B_{1} \}[/mm]
>  
> [mm]f^{-1}(B_{2}):= \{x \in X: f(x) \in B_{2} \}[/mm]
>  
> [mm]f^{-1}(B_{1} \cap B_{2}):= \{x \in X: f(x) \in B_{1} \cap B_{2} \}[/mm]
>  
> Beweis:
>  [mm]f^{-1}(B_{1}) \cap f^{-1}(B_{2})=\{x \in X: f(x) \in B_{1} \} \cap \{x \in X: f(x) \in B_{2} \}=\{x \in X: f(x) \in B_{1} und B_{2} \}=\{x \in X: f(x) \in B_{1} \cap B_{2} \}.[/mm]

Die Aussage "$f(x) [mm] \in B_1$ [/mm] und [mm] $B_2$" [/mm] macht keinen Sinn, du meinst "$f(x) [mm] \in B_1$ [/mm] und $f(x) [mm] \in B_2$". [/mm] Sonst ist es aber ok :)

LG Felix


Bezug
                                
Bezug
Sätze beweisen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:42 Mi 03.11.2010
Autor: Mandy_90

Aufgabe
b) [mm] f^{-1}(B_{1}-B_{2})=f^{-1}(B_{1})-f^{-1}(B_{2}) [/mm]

Ok,dann hab ich mal versucht die b) zu beweisen:

[mm] f^{-1}(B_{1}-B_{2})=\{x \in X:f(x) \in B_{1} \wedge x \in X:f(x) \not\in B_{2}\}=\{x \in X:f(x) \in B_{1}\} \wedge \{x \in X:f(x) \not\in B_{2}\}=\{x \in X:f(x) \in B_{1}\}-\{x \in X:f(x) \not\in B_{2}\}= f^{-1}(B_{1})- f^{-1}(B_{2}). [/mm]

Ist das in Ordnung so?

lg

Bezug
                                        
Bezug
Sätze beweisen: Antwort
Status: (Antwort) fertig Status 
Datum: 07:54 Do 04.11.2010
Autor: fred97


> b) [mm]f^{-1}(B_{1}-B_{2})=f^{-1}(B_{1})-f^{-1}(B_{2})[/mm]
>  Ok,dann hab ich mal versucht die b) zu beweisen:
>  
> [mm]f^{-1}(B_{1}-B_{2})=\{x \in X:f(x) \in B_{1} \wedge x \in X:f(x) \not\in B_{2}\}=\{x \in X:f(x) \in B_{1}\} \wedge \{x \in X:f(x) \not\in B_{2}\}=\{x \in X:f(x) \in B_{1}\}-\{x \in X:f(x) \not\in B_{2}\}= f^{-1}(B_{1})- f^{-1}(B_{2}).[/mm]
>  
> Ist das in Ordnung so?

Nicht ganz. Vor dem letzten "=" muß es lauten:

          [mm] \{x \in X:f(x) \in B_{1}\}-\{x \in X:f(x) \in B_{2}\} [/mm]


FRED

          

>  
> lg


Bezug
                                                
Bezug
Sätze beweisen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:55 Do 04.11.2010
Autor: Mandy_90


> > b) [mm]f^{-1}(B_{1}-B_{2})=f^{-1}(B_{1})-f^{-1}(B_{2})[/mm]
>  >  Ok,dann hab ich mal versucht die b) zu beweisen:
>  >  
> > [mm]f^{-1}(B_{1}-B_{2})=\{x \in X:f(x) \in B_{1} \wedge x \in X:f(x) \not\in B_{2}\}=\{x \in X:f(x) \in B_{1}\} \wedge \{x \in X:f(x) \not\in B_{2}\}=\{x \in X:f(x) \in B_{1}\}-\{x \in X:f(x) \not\in B_{2}\}= f^{-1}(B_{1})- f^{-1}(B_{2}).[/mm]
>  
> >  

> > Ist das in Ordnung so?
>  
> Nicht ganz. Vor dem letzten "=" muß es lauten:
>  
> [mm]\{x \in X:f(x) \in B_{1}\}-\{x \in X:f(x) \in B_{2}\}[/mm]
>  

Ja so hatte ich das auch,habs falsch abgetippt.

Vielen Dank nochmal =)

Bezug
                                                
Bezug
Sätze beweisen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:59 Do 04.11.2010
Autor: Mandy_90

Achso ein Frage hab ich noch.In der Aufgabenstellung steht,dass [mm] A_{1},A_{2} \subset [/mm] X sind.
Aber diese "Tatsache" habe ich gar nicht für die Lösung der Aufgabe gebraucht.Wieso steht sie dann da?

lg

Bezug
                                                        
Bezug
Sätze beweisen: Antwort
Status: (Antwort) fertig Status 
Datum: 17:23 Do 04.11.2010
Autor: leduart

Hallo
die A sind nicht nötig, aber wenn du [mm] f(A_i)=B_i [/mm] schreibst, und [mm] a_I\in A_i [/mm] vereinfachen sich einige der Aussagen etwas.
Aber deine Beweise sind so auch sehr schön und richtig.
gruss leduart


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.englischraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]