Satz von Fubini (Anwendung) < Integrationstheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
|
Hallo,
ich habe leider große Schwierigkeiten bei einer Aufgabe... Diese Aufgabe muss ich bis morgen Abend unbedingt lösen, weil ich sonst nicht genug Punkte für die Zulassung der ersten Teilklausur bekomme :(
Ich sitze seit Tagen an dieser Aufgabe, aber da will mir kein vernünftiger Ansatz einfallen... Vielleicht kann mir jemand dabei helfen.
Die Aufgabe ist:
Gegeben sei eine borelmeßbare Funktion [mm] $f:\mathbb{R}^{n} \rightarrow [/mm] [0, [mm] \infty]$.
[/mm]
Zeigen Sie: [mm] $\int f\; d\mathcal{L}^{n} [/mm] = [mm] \int\ldots \int f(x_{1}, \ldots, x_{n})\; d\mathcal{L}^{1}(x_{1}) \ldots d\mathcal{L}^{1}(x_{n})$
[/mm]
Ansatz:
Hier wende ich Sätze aus der Vorlesung an. Die Sätze habe ich ganz unten aufgeschrieben.
Wegen Satz I gilt [mm] $\mathcal{L}^{2} [/mm] = [mm] \mathcal{L}^{1} \otimes \mathcal{L}^{1}$. [/mm] Also ist [mm] $\int f\; [/mm] d [mm] \mathcal{L}^{n} [/mm] = [mm] \int f\; [/mm] d [mm] \left ( \mathcal{L}^{1} \otimes \mathcal{L}^{n - 1} \right [/mm] )$
Auf diese Weise kann ich den Satz von Fubini anwenden (Satz II).
Ich dachte mir, dass ich von Satz II den Abschnitt $(3.4)$ anwenden kann, da alle Voraussetzungen erfüllt sind bis auf "$[f > 0]$ ist [mm] $\sigma$ [/mm] - endlich bzgl. [mm] $\mu \otimes [/mm] v$". Da weiß ich nicht, ob diese Voraussetzung durch die borelmeßbarkeit erfüllt ist. Ist es das? Falls ja, warum?
Außerdem befürchte ich, dass man die Aufgabe durch Induktion lösen muss, oder geht das auch ohne? Beim Induktionsschritt habe ich nämlich das Problem, dass ich die Induktionsvoraussetzung nicht einsetzen kann.
Meine Induktionversuch sieht bis jetzt so aus:
Induktionanfang: $n = 2$
Für eine borelmeßbare Menge $f: [mm] \mathbb{R}^{2} \rightarrow [/mm] [0, [mm] \infty]$ [/mm] gilt nach Satz II (3.4):
[mm] $\int f\; [/mm] d [mm] \mathcal{L}^{2} [/mm] = [mm] \int f\; [/mm] d [mm] \left ( \mathcal{L}^{1} \otimes \mathcal{L}^{2 - 1} \right [/mm] ) = [mm] \int f\; [/mm] d [mm] \left ( \mathcal{L}^{1} \otimes \mathcal{L}^{1} \right [/mm] ) = [mm] \int \int f(x_{1}, x_{2})\; [/mm] d [mm] \mathcal{L}^{1}(x_{1})\; [/mm] d [mm] \mathcal{L}^{1}(x_{2})$
[/mm]
Induktionsvoraussetzung:
[mm] $\exists\; [/mm] n [mm] \in \mathbb{N}_{\ge 2}: \int [/mm] f [mm] \; [/mm] d [mm] \mathcal{L}^{n} [/mm] = [mm] \int \ldots \int f(x_{1}, \ldots, x_{n})\;d\mathcal{L}^{1}(x_{1}) \ldots [/mm] d [mm] \mathcal{L}^{1}(x_{n})$
[/mm]
Induktionsschritt: $n [mm] \mapsto [/mm] n + 1$
[mm] $\int f\; [/mm] d [mm] \mathcal{L}^{n + 1} [/mm] = [mm] \int f\; [/mm] d [mm] \left ( \mathcal{L}^{1} \otimes \mathcal{L}^{n} \right [/mm] ) = [mm] \ldots [/mm] $
Wie schaffe ich es hier, die Induktionsvoraussetzung einzusetzen?
Würde mich wirklich freuen, wenn sich jemand melden würde!
Viele Grüße
Nadine
Satz I: Für alle $1 [mm] \le [/mm] k < n$ gilt [mm] $\mathcal{L}^{n} [/mm] = [mm] \mathcal{L}^{k} \otimes \mathcal{L}^{n - k}$ [/mm] und alle Intervalle [mm] $\prod\limits_{i = 1}^{n} (a_{i}, b_{i})$ [/mm] sind [mm] $\mathcal{L}^{n}$ [/mm] - meßbar mit [mm] $\mathcal{L}^{n} \left ( \prod\limits_{i = 1}^{n} (a_{i}, b_{i}) \right [/mm] ) = [mm] \prod\limits_{i = 1}^{n} (b_{i} [/mm] - [mm] a_{i})$
[/mm]
Satz II: Satz von Fubini
Es seien [mm] $\mu$ [/mm] bzw. $v$ Maße auf $X$ bzw. $Y$.
Dann ist das Produktmaß [mm] $\mu \otimes [/mm] v$ ein Maß auf $X [mm] \times [/mm] Y$ mit
(3.1)
[mm] $\forall [/mm] S [mm] \subseteq [/mm] X [mm] \times Y:\exists [/mm] R [mm] \supseteq [/mm] S$ meßbar bzgl. [mm] $\mu \otimes [/mm] v$: [mm] $(\mu \otimes [/mm] v)(S) = [mm] (\mu \otimes [/mm] v)(R)$
(3.2)
Für [mm] $\mu$ [/mm] bzw. $v$ - meßbares $A$ bzw. $B$ ist $A [mm] \times [/mm] B$ meßbar bzgl. [mm] $\mu \otimes [/mm] v$ und [mm] $(\mu \otimes [/mm] v)(A [mm] \times [/mm] B) = [mm] \mu(A) [/mm] v(B)$.
(3.3)
Für $S [mm] \subseteq [/mm] X [mm] \times [/mm] Y$ meßbar und [mm] $\sigma$- [/mm] endlich bzgl. [mm] $\mu \otimes [/mm] v$ gilt:
[mm] $S_{y} [/mm] := [mm] \{x\; \vert \; (x,y) \in S\}$ [/mm] ist für $v$- fast alle $y [mm] \in [/mm] Y$ meßbar bzgl. [mm] $\mu$,
[/mm]
[mm] $\left ( y \mapsto \mu(S_{y}) \right [/mm] )$ ist meßbar bzgl. $v$.
[mm] $S^{x} [/mm] := [mm] \{y\; \vert \; (x,y) \in S\}$ [/mm] ist für [mm] $\mu$- [/mm] fast alle $x [mm] \in [/mm] X$ meßbar bzgl. $v$,
[mm] $\left (x \mapsto v(S^{x}) \right [/mm] )$ ist meßbar bzgl. [mm] $\mu$.
[/mm]
[mm] $(\mu \otimes [/mm] v)(S) = [mm] \int \mu(S_{y})\; [/mm] dv(y) = [mm] \int v(S^{x})\; d\mu(x)$
[/mm]
(3.4)
Für $f: X [mm] \times [/mm] Y [mm] \rightarrow [/mm] [0, [mm] \infty]$ [/mm] meßbar, und $[f>0]$ sei [mm] $\sigma$ [/mm] - endlich bzgl. [mm] $\mu \otimes [/mm] v$ gilt:
$(x [mm] \mapsto [/mm] f(x,y))$ ist für $v$ - fast alle $y [mm] \in [/mm] Y$ meßbar bzgl. [mm] $\mu$,
[/mm]
$(y [mm] \mapsto \int [/mm] f(x,y) [mm] \mu(x))$ [/mm] ist meßbar bzgl. $v$
$(y [mm] \mapsto [/mm] f(x,y))$ ist für [mm] $\mu$ [/mm] - fast alle $x [mm] \in [/mm] X$ meßbar bzgl. $v$,
$(x [mm] \mapsto \int [/mm] f(x,y) v(y))$ ist meßbar bzgl. [mm] $\mu$
[/mm]
[mm] $\intf\; d(\mu \otimes [/mm] v) = [mm] \int \int f(x,y)\; d\mu(x) [/mm] dv(y) = [mm] \int \int [/mm] f(x,y) dv(y) [mm] d\mu(x)$
[/mm]
(3.5)
Für $f [mm] \in L^{1}(\mu \otimes [/mm] v)$ gilt:
$(x [mm] \mapsto [/mm] f(x,y)) [mm] \in L^{1}(\mu)$ [/mm] für $v$ - fast alle $y [mm] \in [/mm] Y$ ,
$(y [mm] \mapsto \int [/mm] f(x,y) [mm] \mu(x)) \in L^{1}(v)$
[/mm]
$(y [mm] \mapsto [/mm] f(x,y)) [mm] \in L^{1}(v)$ [/mm] für [mm] $\mu$ [/mm] - fast alle $x [mm] \in [/mm] X$ ,
$(x [mm] \mapsto \int [/mm] f(x,y) v(y)) [mm] \in L^{1}(\mu)$
[/mm]
[mm] $\int f\; d(\mu \otimes [/mm] v) = [mm] \int \int f(x,y)\; d\mu(x) [/mm] dv(y) = [mm] \int \int [/mm] f(x,y) dv(y) [mm] d\mu(x)$
[/mm]
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 18:20 Fr 03.12.2021 | Autor: | matux |
$MATUXTEXT(ueberfaellige_frage)
|
|
|
|