www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Englisch
  Status Grammatik
  Status Lektüre
  Status Korrekturlesen
  Status Übersetzung
  Status Sonstiges (Englisch)

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Topologie und Geometrie" - Satz von Pappos
Satz von Pappos < Topologie+Geometrie < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Satz von Pappos: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:30 Mi 12.02.2014
Autor: sonnschein

Aufgabe
Im Satz von Pappos sei eine der beiden Geraden die unendlich ferne Gerade. Welchen Satz in der affinen Ebene erhalten wir?

Hallo zusammen,
der Satz von Pappos in der Projektiven Geometrie lautet ja:
Es seien L [mm] \not= [/mm] M zwei Geraden der projektiven Ebene. Die drei Punkte [mm] a_{1}, a_{2}, a_{3} \in [/mm] L und [mm] b_{1}, b_{2}, b_{3} \in [/mm] M seien voneinander und vom Schnittpunkt L [mm] \cap [/mm] M verschieden. Dann sind die drei Schnittpunkte [mm] \overline{a_{i} b_{j}} \cap \overline{a_{j} b_{i}}, i\not=j=1,2,3 [/mm] kollinear.

So wie die Aufgabe formuliert ist, nehme ich an, dass gemeint ist, dass eine der Geraden L, M die unendlich ferne Gerade ist, ich nehme an L sei die unendlich ferne. Prinzipiell kann ich mir unter der unedlich fernen Geraden etwas vorstellen. Aber sich das hier genau auswirken würde, kann ich mir nicht vorstellen. Ist denn L nun auch parallel zu M?
Nun sind ja auf L und M jeweils drei Punkte, die über Kreuz miteinander verbunden werden sollen. Wo liegen denn die entsprechenden Schnittpunkte? Oder schneiden die sich gar nicht? Sind die alle parallel?
Und was für ein Satz in der affinen Ebene ergibt sich daraus? Da gibt es doch eigentlich gar keine [mm] \infty-ferne [/mm] Gerade...

Ich hoffe, mir kann da jemand ein bisschen auf die Sprünge helfen...

Herzlichen Dank schonmal im Voraus! :)



Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
Satz von Pappos: Antwort
Status: (Antwort) fertig Status 
Datum: 00:31 Do 13.02.2014
Autor: leduart

Hallo
zeichne den Satz mit 2 endlichen geraden auf. 3 Punkte auf jeder Gerasen, nach vorschrift verbinden, die 3 Schnittpunkte liegen auf einer Geraden. verschieb die pbere Gerade ins unendlich, dann werden die 2 geraden, die von der unteren aus eine der oberen punkte trafen parallel.  daraus mach dann deinen affinen Satz.
Gruss leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.englischraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]