Schiefer Wurf < HochschulPhysik < Physik < Naturwiss. < Vorhilfe
|
Aufgabe | Ein Ball wird aus einer Höhe h unter einem Winkel [mm] \alpha [/mm] zur Horizontalen weggeworfen und soll einen Punkt in einer Entfernung w auf dem Boden treffen.
Wie groß muss seine Anfangsgeschwindigkeit [mm] v_{0} [/mm] sein?
Angaben:
h = 1,54 m
[mm] \alpha [/mm] = 30°
w = 21,3 m |
Ich weiß einfach nicht wie ich die obere Aufgabe angehen soll.
Ich hab ja die Bewegungsgleichung h = [mm] \bruch{g\*t^{2}}{2}+v_{z}\*t
[/mm]
Ich weiß das
[mm] v_{x} [/mm] = [mm] v_{0} \* cos(\alpha)
[/mm]
[mm] v_{z} [/mm] = [mm] v_{0} \* sin(\alpha) [/mm] ist
Jetzt hab ich aber weder [mm] v_{0} [/mm] noch t gegeben.
Ich hab mir dann überlegt, dass die Weite w = [mm] v_{x} \* [/mm] t sein müsste oder?
Wenn ich das umforme erhalte ich t = [mm] \bruch{w}{v_{x}}.
[/mm]
Wenn ich das jetzt in die Bewegungsgleichung einsetze erhalte ich folgende Formel:
h = [mm] \bruch{g\*(\bruch{w}{v_{0}\*cos(\alpha)})^{2}}{2} [/mm] + [mm] v_{0}\*sin(\alpha)\*\bruch{w}{v_{0}\*cos(\alpha)}
[/mm]
Stimmt das bisher, oder bin ich das ganze falsch angegangen?
Danke im Voraus
Lg
|
|
|
|
Hallo,
für die Wurfweite w mit Anfangshöhe h gilt:
[mm] w=\bruch{v_0^{2}*sin(2\alpha)}{2*g}*\pmat{1+\wurzel{1+\bruch{2*h*g}{v_0^{2}*sin^{2}(\alpha)}}}
[/mm]
Steffi
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 14:48 Di 23.11.2010 | Autor: | leduart |
Hallo
G wirkt nach unten, muss also ein negatives Vorzeichen haben.
sonst ist dein Ansatz richtig.
Gruss leduart
|
|
|
|
|
Dann versuche ich es folgendermaßen umzuformen:
$h = [mm] \bruch{-g*(\bruch{w}{v_{0}*cos(\alpha)})^{2}}{2} [/mm] + [mm] v_{0}*sin(\alpha)*\bruch{w}{v_{0}*cos(\alpha)} [/mm] $
$h = [mm] \bruch{\bruch{-g*w^{2}}{v_{0}^{2}*cos(\alpha)^{2}}}{2} [/mm] + [mm] \bruch{v_{0}*sin(\alpha)*w}{v_{0}*cos(\alpha)} [/mm] $ (hier kürzt sich das [mm] v_{0} [/mm] weg)
$h * [mm] cos(\alpha) [/mm] = [mm] \bruch{\bruch{-g*w^{2}}{v_{0}^{2}*cos(\alpha)^{2}}}{2} [/mm] + [mm] sin(\alpha)*w$
[/mm]
[mm] $\bruch{h * cos(\alpha)}{sin(\alpha)*w} [/mm] = [mm] \bruch{-g*w^{2}}{2*v_{0}^{2}*cos(\alpha)^{2}}$
[/mm]
[mm] $\bruch{h * cos(\alpha)}{-g*w^{3}*sin(\alpha)} [/mm] = [mm] \bruch{1}{2*v_{0}^{2}*cos(\alpha)^{2}}$
[/mm]
[mm] $\bruch{2*h * cos(\alpha)^{3}}{-g*w^{3}*sin(\alpha)} [/mm] = [mm] \bruch{1}{v_{0}^{2}}$
[/mm]
[mm] $\bruch{-g*w^{3}*sin(\alpha)}{2*h * cos(\alpha)^{3}} [/mm] = [mm] v_{0}^{2}$
[/mm]
[mm] $\wurzel{\bruch{-g*w^{3}*sin(\alpha)}{2*h * cos(\alpha)^{3}}} [/mm] = [mm] v_{0}$
[/mm]
Rauskommen soll für [mm] v_{0} [/mm] ca. 14.4 m/s. Ich komm einfach nicht weiter -.-
Hab ich falsch umgeformt? Was hab ich falsch gemacht?
Bitte helft mir ich verzweifle langsam :(
Lg
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 09:14 Mi 24.11.2010 | Autor: | Loddar |
Hallo dreamweaver!
> [mm]h = \bruch{-g*(\bruch{w}{v_{0}*cos(\alpha)})^{2}}{2} + v_{0}*sin(\alpha)*\bruch{w}{v_{0}*cos(\alpha)}[/mm]
>
> [mm]h = \bruch{\bruch{-g*w^{2}}{v_{0}^{2}*cos(\alpha)^{2}}}{2} + \bruch{v_{0}*sin(\alpha)*w}{v_{0}*cos(\alpha)}[/mm]
> (hier kürzt sich das [mm]v_{0}[/mm] weg)
Bis hierhin sehe ich keinen Fehler.
> [mm]h * cos(\alpha) = \bruch{\bruch{-g*w^{2}}{v_{0}^{2}*cos(\alpha)^{2}}}{2} + sin(\alpha)*w[/mm]
Wenn du die gleichung mit [mm] $\cos(\alpha)$ [/mm] multiplizierst, musstd Du das auch auf den ersten Bruch auf der rechten Seite machen. Derselbe Fehler zieht sich dann durch.
Bedenke, dass beide Terme mit einem Pluszeichen verbunden sind.
Gruß
Loddar
|
|
|
|
|
Danke, so, noch ein Versuch
$ h = [mm] \bruch{\bruch{-g\cdot{}w^{2}}{v_{0}^{2}\cdot{}cos(\alpha)^{2}}}{2} [/mm] + [mm] \bruch{v_{0}\cdot{}sin(\alpha)\cdot{}w}{v_{0}\cdot{}cos(\alpha)} [/mm] $
$ h = [mm] \bruch{-g\cdot{}w^{2}}{2\cdot{}v_{0}^{2}\cdot{}cos(\alpha)^{2}} [/mm] + [mm] \bruch{sin(\alpha)\cdot{}w}{cos(\alpha)} [/mm] $
$ h - [mm] \bruch{sin(\alpha)\cdot{}w}{cos(\alpha)} [/mm] = [mm] \bruch{-g\cdot{}w^{2}}{2\cdot{}v_{0}^{2}\cdot{}cos(\alpha)^{2}}$
[/mm]
$ [mm] h\cdot{}cos(\alpha)^{2} [/mm] - [mm] \bruch{sin(\alpha)\cdot{}w\cdot{}cos(\alpha)^{2}}{cos(\alpha)} [/mm] = [mm] \bruch{-g\cdot{}w^{2}}{2\cdot{}v_{0}^{2}}$ [/mm] (hier kürzt sicht jetzt das [mm] $cos(\alpha) [/mm] im Nenner weg)
$ [mm] h\cdot{}cos(\alpha)^{2} [/mm] - [mm] sin(\alpha)\cdot{}w\cdot{}cos(\alpha) [/mm] = [mm] \bruch{-g\cdot{}w^{2}}{2\cdot{}v_{0}^{2}}$ [/mm]
$ [mm] 2\cdot{}h\cdot{}cos(\alpha)^{2} [/mm] - [mm] 2\cdot{}sin(\alpha)\cdot{}w\cdot{}cos(\alpha) [/mm] = [mm] \bruch{-g\cdot{}w^{2}}{v_{0}^{2}}$ [/mm]
$ [mm] v_{0}^{2}\cdot{}2\cdot{}h\cdot{}cos(\alpha)^{2} [/mm] - [mm] v_{0}^{2}\cdot{}2\cdot{}sin(\alpha)\cdot{}w\cdot{}cos(\alpha) [/mm] = [mm] -g\cdot{}w^{2}$ [/mm]
$ [mm] v_{0}^{2}\cdot{}(2\cdot{}h\cdot{}cos(\alpha)^{2} [/mm] - [mm] 2\cdot{}sin(\alpha)\cdot{}w\cdot{}cos(\alpha)) [/mm] = [mm] -g\cdot{}w^{2}$ [/mm]
$ [mm] v_{0}^{2} [/mm] = [mm] \bruch{-g\cdot{}w^{2}}{(2\cdot{}h\cdot{}cos(\alpha)^{2} - 2\cdot{}sin(\alpha)\cdot{}w\cdot{}cos(\alpha))}$ [/mm]
$ [mm] v_{0} [/mm] = [mm] \wurzel{\bruch{-g\cdot{}w^{2}}{(2\cdot{}h\cdot{}cos(\alpha)^{2} - 2\cdot{}sin(\alpha)\cdot{}w\cdot{}cos(\alpha))}}$ [/mm]
Mit dieser Formel komm ich auf 16,6 m/s. Richtig ist allerdings 14,64 m/s.
Was hab ich schon wieder falsch gemacht? -.-
Lg
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 11:09 Do 25.11.2010 | Autor: | M.Rex |
Hallo
> Danke, so, noch ein Versuch
>
> [mm]h = \bruch{\bruch{-g\cdot{}w^{2}}{v_{0}^{2}\cdot{}cos(\alpha)^{2}}}{2} + \bruch{v_{0}\cdot{}sin(\alpha)\cdot{}w}{v_{0}\cdot{}cos(\alpha)}[/mm]
>
> [mm]h = \bruch{-g\cdot{}w^{2}}{2\cdot{}v_{0}^{2}\cdot{}cos(\alpha)^{2}} + \bruch{sin(\alpha)\cdot{}w}{cos(\alpha)}[/mm]
>
> [mm]h - \bruch{sin(\alpha)\cdot{}w}{cos(\alpha)} = \bruch{-g\cdot{}w^{2}}{2\cdot{}v_{0}^{2}\cdot{}cos(\alpha)^{2}}[/mm]
Bis hier ist alles okay, jetzt würde ich direkt mal mit [mm] v_{0}^{2} [/mm] multiplizieren, so dass du:
[mm]h - \bruch{sin(\alpha)\cdot{}w}{cos(\alpha)} = \bruch{-g\cdot{}w^{2}}{2\cdot{}v_{0}^{2}\cdot{}cos(\alpha)^{2}}[/mm]
[mm]\gdw v_{0}^{2}*\left(h - \bruch{sin(\alpha)\cdot{}w}{cos(\alpha)}\right)=\bruch{-g\cdot{}w^{2}}{2\cdot{}cos(\alpha)^{2}}[/mm]
erhältst.
Jetzt evtl noch umformen zu
[mm] $\gdw v_{0}^{2}*\left(h-w*\tan(alpha)\right)=\bruch{-g\cdot{}w^{2}}{2\cdot{}cos(\alpha)^{2}}$,
[/mm]
und das ganze wird relativ schön.
>
> $ [mm]h\cdot{}cos(\alpha)^{2}[/mm] -
> [mm]\bruch{sin(\alpha)\cdot{}w\cdot{}cos(\alpha)^{2}}{cos(\alpha)}[/mm]
> = [mm]\bruch{-g\cdot{}w^{2}}{2\cdot{}v_{0}^{2}}$[/mm] (hier
> kürzt sicht jetzt das [mm]$cos(\alpha)[/mm] im Nenner weg)
>
> [mm]h\cdot{}cos(\alpha)^{2} - sin(\alpha)\cdot{}w\cdot{}cos(\alpha) = \bruch{-g\cdot{}w^{2}}{2\cdot{}v_{0}^{2}}[/mm]
>
> [mm]2\cdot{}h\cdot{}cos(\alpha)^{2} - 2\cdot{}sin(\alpha)\cdot{}w\cdot{}cos(\alpha) = \bruch{-g\cdot{}w^{2}}{v_{0}^{2}}[/mm]
>
> [mm]v_{0}^{2}\cdot{}2\cdot{}h\cdot{}cos(\alpha)^{2} - v_{0}^{2}\cdot{}2\cdot{}sin(\alpha)\cdot{}w\cdot{}cos(\alpha) = -g\cdot{}w^{2}[/mm]
>
>
> [mm]v_{0}^{2}\cdot{}(2\cdot{}h\cdot{}cos(\alpha)^{2} - 2\cdot{}sin(\alpha)\cdot{}w\cdot{}cos(\alpha)) = -g\cdot{}w^{2}[/mm]
>
> [mm]v_{0}^{2} = \bruch{-g\cdot{}w^{2}}{(2\cdot{}h\cdot{}cos(\alpha)^{2} - 2\cdot{}sin(\alpha)\cdot{}w\cdot{}cos(\alpha))}[/mm]
>
> [mm]v_{0} = \wurzel{\bruch{-g\cdot{}w^{2}}{(2\cdot{}h\cdot{}cos(\alpha)^{2} - 2\cdot{}sin(\alpha)\cdot{}w\cdot{}cos(\alpha))}}[/mm]
>
> Mit dieser Formel komm ich auf 16,6 m/s. Richtig ist
> allerdings 14,64 m/s.
Das kann schon ein Rundungsfehler sein, gerechnet hast du auf den ersten flüchtigen Blick korrekt.
>
> Was hab ich schon wieder falsch gemacht? -.-
>
> Lg
>
>
|
|
|
|