Schnittpunkt bestimmen < Ganzrationale Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 12:29 So 11.01.2009 | Autor: | starkurd |
Guten Tag alle zusammen,
ich habe gegeben folgende ganzrationale Fkt. [mm] f(x)=0,5x^3-1,5x^2
[/mm]
dann habe ich noch die gerade gegeben: g(x)-1
diese b beiden funktion schneiden sich und ich soll jetzt rechnerisch nachweisen,dass der schnittpunkt der beiden funktionen dem wendepunkt von f(x) entspricht.
folgendes habe ich schon gemacht:
ich habe den wendepunkt der fkt f(x) ermittelt w(1/-1)
dann habe ich beider fkt gleichgesetzt und bin auf folgende fkt gekommen:
[mm] f(x)=0,5x^3-1,5x^2+1
[/mm]
diese fkt habe ich dann dividiert mit (x-1) und bin auf folgende fkt gekommen:
[mm] f(x)=0,5x^2-x-1
[/mm]
ich weiß jetzt nicht,wie ich das rechnerisch nachweisen soll,dass der schnittpunkt gleich der wendepunkt ist.
ich weiß,dass ich zwei fuktionen gleichsetzen muss- die ausgangsfkt der ganzrationalen fkt muss ich auf jeden fall nehmen [mm] f(x)=0,5x^3-1,5x^2,
[/mm]
aber mit welcher fkt muss diese gleichgesetzt werden?
oder liege ich mit meinen überlegen falsch?
vielen dank im voraus für euren einsatz.
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 12:32 So 11.01.2009 | Autor: | Loddar |
Hallo starkud!
Deine Geradengleichung lautet: $g(x) \ [mm] \red{=} [/mm] \ -1$ .
Da Du ja bereits gezeigt hast, dass der Wendepunkt den y-Wert [mm] $y_w [/mm] \ = \ -1$ besitzt, bist Du schon fertig.
Wenn Du aber nochmals rechnen willst, musst Du hier gleichsetzen:
$$f(x) \ = \ g(x)$$
[mm] $$0.5*x^3-1.5*x^2 [/mm] \ = \ -1$$
Gruß
Loddar
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 12:33 So 11.01.2009 | Autor: | starkurd |
danke,das hätte ich nicht gedacht
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 12:40 So 11.01.2009 | Autor: | starkurd |
habe das jetzt mal gemacht mit f(x)=g(x)
ich habe -1 mit +1 "rüber gebracht" und bin auf folgende Gleichung gekommen: [mm] f(x)=0,5x^2-x-1
[/mm]
ist das jetzt falsch,wie ich vorgegangen bin?ich glaube schon! ich müsste doch eigentlich für x einen wert ermittteln und diesen dann in f(x) einsetzen!
könnt ihr mir bitte eine hilfestellung geben!
nochmals danke im voraus.
|
|
|
|
|
Hallo starkurd,
da ist irgendwas schiefgegangen. Wenn Du f(x)=g(x) ansetzt, dann stehen beide nachher nicht mehr in der Gleichung - du willst schließlich ein x bestimmen, bei dem das gilt. Außerdem hast Du wohl mit der Gleichung der Ableitung hantiert, die war aber hier nicht gefragt.
Es war ja
[mm] f(x)=0,5x^3-1,5x^2
[/mm]
g(x)=-1
f(x)=g(x) heißt also: [mm] 0,5x^3-1,5x^2=-1
[/mm]
Diese Gleichung ist nur deswegen gut lösbar, weil Du den einen Schnittpunkt schon kennst: (1,-1)
Die beiden anderen liegen bei [mm] (1+\wurzel{3},-1) [/mm] und [mm] (1-\wurzel{3},-1)
[/mm]
lg,
reverend
|
|
|
|