Schwache Formulierung < DGL < Numerik < Hochschule < Mathe < Vorhilfe
|
Aufgabe | Bestimmen Sie die schwache Formulierung folgender Differentialgleichung:
[mm] \bruch{ \partial u}{ \partial t} = div(\kappa \nabla u) [/mm] in [mm] \Omega \subset \IR^{3}[/mm]
[mm] \bruch{ \partial u}{ \partial n} = \Theta (T_{0} - u) [/mm] in [mm] \partial\Omega [/mm]
Dabei bezeichnen [mm] \Theta [/mm], [mm] \kappa [/mm] und [mm] T_{0} [/mm] Konstanten. |
Hallo und danke schon mal für eure Hilfe!
Also wenn ich das richtig gesehen habe, dann handelt es sich hier um eine Poissongleichung mit einer Neumannrandwertbedingung!?!
Dabei sieht die Poissongleichung allgemeine wie folgt aus:
[mm] - \Delta u = f [/mm] in [mm] \Omega [/mm]
[mm] \bruch{ \partial u}{ \partial n} = g [/mm] in [mm] \partial\Omega [/mm]
Laut Skript sieht die schwache Formulierung dafür wie folgt aus:
[mm] \integral_{\Omega} (\Delta u , \Delta v ) \, dx = (f,v)_{0,\Omega} + (g,v)_{0,\partial \Omega}[/mm]
Okay, durch umformen erhalte ich:
[mm] g = \Theta (T_{0} - u) [/mm] und
[mm] f = - \bruch{1}{\kappa} \bruch{ \partial u}{ \partial t} [/mm]
Ja, und das wars leider auch schon. Wenn ich wüsste was genau [mm](f,v)_{0,\Omega}[/mm] und [mm](g,v)_{0,\partial \Omega}[/mm] sein sollen!?!
Laut Skript geht es dabei um schwache Ableitungen, Sobolevräume und den guten alten [mm]L_{2}(\Omega)[/mm]. Theoretisch glaube ich zu wissen, was da passiert, aber an diesem Bsp. scheitere ich.
Es ist doch so, das diese DGL-Art nicht immer eine Lösung haben muss!?! Deshalb bastelt man sich aus dem [mm]L_{2}(\Omega)[/mm] einen zum genauen Problem passenden Raum, eben den Soblevraum. Dann versucht man die Lsg. durch Elemente dieses Raums anzunähern (Dafür gibts verschieden Ansätze, hat ja aber nichts mit meinem Problem zu tun!?!).
Die Verknüpfung zwischen exaktem Problem und Hilfsproblem (auch Variationsproblem genannt?) ist eben die schwache Formulierung.
Tja, und nun ... ?
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 12:20 Mo 04.02.2013 | Autor: | matux |
$MATUXTEXT(ueberfaellige_frage)
|
|
|
|