Senkrechter Vektor < Vektoren < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
|
Zwei Punkte A und B sind in [mm] \IR^{3} [/mm] gegeben, somit auch der Vektor AB. Nun sollen die Koordinaten für einen zweiten Vektor berechnet werden, unter der Bedingung, dass dieser senkrecht zu AB ist und sein Betrag halb so groß wie der von AB.
Könntet ihr mir dafür Hinweise für den Lösungsweg geben? (Ohne Skalarprodukt etc.)
Vielen Dank.
|
|
|
|
> Zwei Punkte A und B sind in [mm]\IR^{3}[/mm] gegeben, somit auch der
> Vektor AB. Nun sollen die Koordinaten für einen zweiten
> Vektor berechnet werden, unter der Bedingung, dass dieser
> senkrecht zu AB ist und sein Betrag halb so groß wie der
> von AB.
>
> Könntet ihr mir dafür Hinweise für den Lösungsweg geben?
> (Ohne Skalarprodukt etc.)
Ein einfaches Rezept (das aber nur mit Rückgriff auf Kenntnis des Skalarproduktes unmittelbar als richtig einsehbar ist), wäre etwa folgendes:
1. Fall: Ist eine der Koordinaten von [mm] $\vec{AB}$ [/mm] gleich $0$, so vertausche die anderen beiden Koordinaten und ändere das Vorzeichen einer der so vertauschten Koordinaten. Dies ergibt einen zu [mm] $\vec{AB}$ [/mm] senkrechten (und gleich langen) Vektor, den Du durch Multiplikation mit dem Skalar [mm] $\frac{1}{2}$ [/mm] noch auf die halbe Länge zusammenstauchen musst.
2. Fall: Ist keine der Koordinaten von [mm] $\vec{AB}$ [/mm] gleich $0$, so setze willkürlich eine dieser Koordinaten $0$, vertausche die anderen zwei Koordinaten und wechsle bei einer der so vertauschten Kooordinaten das Vorzeichen. Dies ergibt einen zu [mm] $\vec{AB}$ [/mm] zwar senkrechten, aber nicht mehr gleich langen Vektor [mm] $\vec{n}$, [/mm] den Du durch Multiplikation mit [mm] $\frac{|\vec{AB}|}{2|\vec{n}|}$ [/mm] noch auf die gewünschte Länge strecken/stauchen musst.
|
|
|
|