Sigma-Algebra < Stochastik < Hochschule < Mathe < Vorhilfe
|
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
Man beschreibe die Sigma-Algebra Sigma(e) über X in folgenden Beispielen:
a) X=R ,e ={ {x} : x in R};
b) X=Q, e={ {r} : r in R};
c) X=R, e={[0,unendlich)}.
meine Lösungen zu a): P(R),also Potenzmenge von R
zu b): P(Q)
zu c): R
habe ich hier richtig gemacht?
Danke im Voraus.
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 10:29 Fr 18.11.2005 | Autor: | Astrid |
Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)
Hallo,
> Man beschreibe die Sigma-Algebra Sigma(e) über X in
> folgenden Beispielen:
> a) X=R ,e ={ {x} : x in R};
> b) X=Q, e={ {r} : r in R};
> c) X=R, e={[0,unendlich)}.
> meine Lösungen zu a): P(R),also Potenzmenge von R
Die von $e$ erzeugte Sigma-Algebra ist die kleinste Sigma-Algebra, die $e$ enthält. Die Potenzmenge von $\IR$ ist das nicht.
Was muss erfüllt sein, damit $\cal{A{}$ eine Sigma-Algebra ist? Ich beziehe mich nun auf die übliche Definition einer Sigma-Algebra:
(i) Zuerst muss die leere Menge und $\IR$ in $\cal{A}$ enthalten sein.
(ii) Wenn nun ein Element in $\cal{A}$ enthalten ist, dann muss auch dessen Komplement enthalten sein. Also hier:
$\IR \backslash \{ x \}$ muss enthalten sein, $x \in \IR$.
(iii) Nun müssen auch alle abzählbaren Vereinigungen von Elementen aus $\cal{A}$ in $\cal{A}$ enthalten sein, also alle abzählbaren Vereinigungen von Elementen aus \IR und $\{ \IR \backslash \{x \} : x \in \IR \}$. Und hiervon müssen auch wieder alle Komplemente enthalten sein, siehe (ii)
Was erhalten wir? Nun alle abzählbaren Mengen und Mengen, deren Komplement abzählbar ist, also:
$\sigma(e)=\{ A \subset \IR : A \mbox{ ist abzählbar oder } A^C \mbox{ ist abzählbar. } \}$
> zu b): P(Q)
Das kannst du jetzt selbst entscheiden!
> zu c): R
Die reellen Zahlen selbst können nie eine Sigma-Algebra sein, denn \IR ist eine Menge und eine Sigma-Algebra über eine Menge ist eine Menge von Mengen und enthält mindestens immer die leere Menge und die Menge selbst.
Viele Grüße
Astrid
|
|
|
|