Sigma berechnen < Sonstiges < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 22:42 Do 09.04.2015 | Autor: | greeven |
Aufgabe | Reispakete der Marke "Die Weißen" können annähernd normalverteilt angesehen werden mit dem Parameter u= 782 (mü). 38,88% aller Pakete liegen gewichtsmäßig zwischen 812g und 891,8g. Bestimmen sie den Parameter Sigma. |
Ich bin über diese Aufgabe gestolpert und weiß nicht, wie ich sie lösen soll. Ich habe zwei Ansätze und der schwerere kommt mir zwar richtig, aber zu hefig, vor. Der einfachere scheint mir aber falsch zu sein.
Ansatz 1:
Ich kenne [mm] \mu [/mm] und ich kenne p. Damit kenne ich also n*p und auch q. Also kann ich [mm] \sigma [/mm] = [mm] \wurzel{n*p*q} [/mm] nehmen und erhalte [mm] \sigma \approx [/mm] 21,86.
Das ist zwar recht einfach, aber ich würde dabei doch annehmen, dass es dann darum geht, wie oft ich ein Reispaket zwischen 812g und 891,8g wähle.
Die Normalverteilung spielt doch aber auf die Verteilung der Gewichte an. Das bringt mich zu meinem Ansatz 2.
Ansatz 2:
Ich weiß, dass die Fläche unter der Verteilung von [mm] z_1 [/mm] bis [mm] z_2 [/mm] gleich 0,3888 sein muss.
Also 0,3888 = [mm] \bruch{1}{\wurzel{2*\pi}}\integral_{z_1}^{z_2}{e^{-\bruch{1}{2}t²}dt}, [/mm] wobei [mm] z_1 [/mm] = [mm] \bruch{812-782}{\sigma} [/mm] und [mm] z_2 [/mm] = [mm] \bruch{891,8-782}{\sigma} [/mm] ist.
Dieser Ansatz wirkt zwar richtig, aber recht kompliziert.
Liege ich mit meinen Überlegungen soweit richtig, dass Ansatz 1 schlicht falsch ist und Ansatz 2 der richtige Weg ist?
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 23:24 Do 09.04.2015 | Autor: | rmix22 |
Beim ersten Ansatz, der, wie du vermutest, falsch ist, denkst du offenbar an die Näherung der Binomialverteiluing durch die NV. Was hast du denn da für n gewählt?
Der zweite Ansatz sieht ganz OK aus und da solltest du Rechnerunetrstützung haben um weiter zu kommen. Dann müsstest du auch nicht normieren.
Allerdings bezweifle ich die Werte in deiner Angabe. Wenn ich mich nicht verrechnet habe ist die größte Wahrscheinlichkeit, die du für den gegebenen Bereich erzielen kannst ca. 27,7%. Auf 38,88% kannst du mit keinem sigma kommen.
Gruß RMix
|
|
|
|