www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Englisch
  Status Grammatik
  Status Lektüre
  Status Korrekturlesen
  Status Übersetzung
  Status Sonstiges (Englisch)

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - Signatur der quadr. Form
Signatur der quadr. Form < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Signatur der quadr. Form: Bitte um Erklärung.
Status: (Frage) beantwortet Status 
Datum: 21:08 So 26.06.2005
Autor: DeusRa

Hallo,

kann mir jemand von euch erklären wie man die Signatur einer quadratischen Form bestimmt ???
z.B. mit [mm]q(x)=(\alpha[sub]1[/sub]+\alpha[sub]2[/sub])^{2}+\alpha[sub]3[/sub]*\alpha[sub]4[/sub] ; x=\vektor{\alpha[sub]1[/sub] \\ ... \\ \alpha[sub]4[/sub]}\in \IR^{4}[/mm]
Am Besten mit

Schritt 1:
Schritt 2:
....


Habe es bisher noch nicht ganz verstanden, und ich sitze an Übungsaufgaben, und würde diese gerne lösen.

Danke schön.

        
Bezug
Signatur der quadr. Form: Vorgehensweise
Status: (Antwort) fertig Status 
Datum: 21:50 So 26.06.2005
Autor: MathePower

Hallo DeusRa,

> kann mir jemand von euch erklären wie man die Signatur
> einer quadratischen Form bestimmt ???
>  z.B. mit
> [mm]q(x)=(\alpha[sub]1[/sub]+\alpha[sub]2[/sub])^{2}+\alpha[sub]3[/sub]*\alpha[sub]4[/sub] ; x=\vektor{\alpha[sub]1[/sub] \\ ... \\ \alpha[sub]4[/sub]}\in \IR^{4}[/mm]
>  

Schritt1 : Bastle Dir aus der quadratischen Gleichung eine passende Matrix A:

[mm] A\; = \;\left( {\begin{array}{*{20}c} 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & {{\raise0.7ex\hbox{$1$} \!\mathord{\left/ {\vphantom {1 2}}\right.\kern-\nulldelimiterspace} \!\lower0.7ex\hbox{$2$}}} \\ 0 & 0 & {{\raise0.7ex\hbox{$1$} \!\mathord{\left/ {\vphantom {1 2}}\right.\kern-\nulldelimiterspace} \!\lower0.7ex\hbox{$2$}}} & 0 \\ \end{array} } \right)[/mm]

Schritt 2: Bestimme nun die Eigenwerte dieser Matrix A, indem Du die Gleichung [mm]\det \left( {A\; - \;\lambda \;I} \right)\; = \;0[/mm] löst.
Die Gleichung ist ein Polynom 4. Grades in [mm]\lambda[/mm].

Schritt 3: Die Matrix A hat dann p positve Eigenwerte, q negative Eigenwerte und r Eigenwerte 0. Das Tripel (p,q,r) nennt man dann die Signatur der Matrix A.

Gruß
MathePower





Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.englischraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]