www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Englisch
  Status Grammatik
  Status Lektüre
  Status Korrekturlesen
  Status Übersetzung
  Status Sonstiges (Englisch)

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Sonstiges" - Sinusförmige Wechselströme
Sinusförmige Wechselströme < Sonstiges < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Sinusförmige Wechselströme: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:17 Do 07.09.2006
Autor: rapsnase

Aufgabe
Zwei Sinusförmige Wechselströme sollen additiv überlagert werden.Den jeweiligen Spannungsverlauf beschreiben die Funktionsgleichungen.

U1= [mm] 200V*sin(w*t-45^{o}) [/mm]

U2= [mm] 200V*sin(w*t+45^{o}) [/mm]

Ermitteln Sie graphisch die resultierende Kurve und bestimmen Sie daraus die Funktionsgleichung!

Also,das rechnen geht ja noch in meine Birne,aber die Zeichnung bekomme ich gar nicht auf's Papier.

[mm] U=\pi/2*200V=314*sin(wt) [/mm]

[mm] U=314*sin90^{o} [/mm]

=314V

Hat jemand ne Idee?

        
Bezug
Sinusförmige Wechselströme: Antwort
Status: (Antwort) fertig Status 
Datum: 12:36 Do 07.09.2006
Autor: Event_Horizon

Bist du dir bei deiner rechnerischen Lösung absolut sicher?

Das sind zwei Ströme mit ner Phasendifferenz von 90°, und das wiederum ergibt einen Faktor  [mm] \wurzel{2} [/mm]

Die Zeichnung geht wie folgt:

Zeichne einen Vektor unter dem Winkel 45° meinetwegen an die y-Achse. An dessen Spitze kommt dann ein weiterer, gleich langer Vektor, allerdings mit Winkel -45°, also senkrecht zum ersten Vektor.

Die resultierende, also Verbindung vom Anfang des ersten zur Spitze des zweiten, gibt dir die Amplitude, und der Winkel die neue Phase.

Das ist ein rechtwinkliges Dreieck,also Pythagoras: [mm] $c=\wurzel{a^2+b^2}=\wurzel{200^2+200^2}=\wurzel{2*200^2}=\wurzel{2}*200$, [/mm] daher der Faktor [mm] \wurzel{2} [/mm]

Und der neue Vektor hat den Winkel 0, also keine Phase. Ist ja auch klar, wenn du zwei gleiche Sinüsse mit gegensätzlicher Phase addierst.

Natürlich bleibt die zeitliche Schwingung bestehen, also

[mm] $U=\wurzel{2}*\sin{wt}$ [/mm]

Zur Rechnung: Such mal nach Additionstheoremen, die dir einen Ausdruck für sin(a)+sin(b) geben!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.englischraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]