www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Englisch
  Status Grammatik
  Status Lektüre
  Status Korrekturlesen
  Status Übersetzung
  Status Sonstiges (Englisch)

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Mathe Klassen 8-10" - Sinusfunktion
Sinusfunktion < Klassen 8-10 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Sinusfunktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:25 So 06.11.2005
Autor: Xath

Hallo!

Ich habe da eine Hausaufgabe auf, wo ich nicht mehr weiter weiß.
Könntet ihr mir bitte helfen?

1) Für jede positive reelle Zahl a sei eine Funktion f gegeben durch
f(x)=a sin x. Die Punkte [mm] A(-\bruch{\pi}{2};f [-\bruch{\pi}{2}]), B(\bruch {3}{2}\pi [/mm] ; f [mm] [\bruch{3}{2}\pi]) [/mm] und [mm] C(\bruch{\pi}{2} [/mm] ; f [mm] [\bruch{\pi}{2}]) [/mm] bilden ein Dreieck ABC.
Bestimmen Sie den Wert von a, für den das Dreieck ABC rechtwinklig ist!

2) Die Fläche, die der Graph von s(x)=sin x im Intervall [mm] 0\le(x)\le\pi [/mm] mit der x-Achse einschließt, hat den Inhalt 2.
Der Graph von t(x)=sin x+1 geht aus dem Graphen von s durch Verschiebung hervor.
Geben Sie zunächst die Nullstelle von t an.
Bestimmen Sie aus diesen Informationen den Inhalt der Fläche unter
t(x) im Intervall von 0 bis [mm] \bruch{3}{2}\pi! [/mm]


        
Bezug
Sinusfunktion: zu Aufgabe 1
Status: (Antwort) fertig Status 
Datum: 17:29 So 06.11.2005
Autor: Loddar

Hallo Xath!


Zunächst sollte man sich die y-Werte der drei Punkte ermitteln:

$A \ [mm] \left( \ -\bruch{\pi}{2} \ ; \ -a \ \right)$ [/mm]     $B \ [mm] \left( \ \bruch{3}{2}\pi \ ; \ -a \ \right)$ [/mm]     $C \ [mm] \left( \ \bruch{\pi}{2} \ ; \ +a \ \right)$ [/mm]


Dann ermitteln wir uns die drei Längen der Seiten gemäß der Abstandsformel:

$d(P;Q) \ = \ [mm] \wurzel{\left(x_Q-x_P\right)^2 + \left(y_Q-y_P\right)^2 \ }$ [/mm]

bzw.

[mm] $d^2(P;Q) [/mm] \ = \ [mm] \left(x_Q-x_P\right)^2 [/mm] + [mm] \left(y_Q-y_P\right)^2$ [/mm]


Zum Beispiel:

[mm] $d^2(A;C) [/mm] \ = \ [mm] \left(\bruch{\pi}{2}+\bruch{\pi}{2}\right)^2 [/mm] + [mm] \left(a+a\right)^2 [/mm] \ = \ [mm] \pi^2 [/mm] + [mm] 4a^2$ [/mm]


Wenn das gesuchte Dreieck rechtwinklig sein soll, muss auch der Satz des Pythagoras gelten:

[mm] $d^2(A;C) [/mm] + [mm] d^2(B;C) [/mm] \ = \ [mm] d^2(A;B)$ [/mm]


Hier nun die drei Werte für [mm] $d^2$ [/mm] eingesetzt und anschließend nach $a_$ aufgelöst.


Kontrollergebnis (bitte nachrechnen, da ohne Gewähr) : [mm] $a_{1/2} [/mm] \ = \ [mm] \pm [/mm] \ [mm] \bruch{\pi}{2}$ [/mm]


Gruß
Loddar


Bezug
        
Bezug
Sinusfunktion: Aufgabe 2
Status: (Antwort) fertig Status 
Datum: 21:35 Mo 07.11.2005
Autor: leduart

Hallo
Wenn du einfach den Graph aufmalst, sinx um 1 nach oben verschoben kannst du die Fläche einfach ablesen, indem du sie aus 3 Teilstücken ausrechnest.
Gruss leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.englischraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]