Skalarprodukt < Vektoren < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 12:41 Do 27.09.2007 | Autor: | Mato |
Hallo!
Ich habe eine allgemeine Frage zum Skalarprodukt. Und zwar wollte ich wissen, ob es nur Definitionssache ist, wie das Skalarprodukt interpretiert wird oder gibt es einen Beweis dafür?
Es heißt ja, dass z.B. der Vektor a auf Vektor b projiziert wird. Warum kann man das einfach machen? Was ist Prokektion überhaupt. Man kann damit schön und gut Winkel und sowas berechnen, aber wo ist die Mathematik dahinter. Ist es wieder sowas wie die Definition "man darf nicht durch Null teilen"? Wenn man den Lehrer in der Schule fragte, warum man es nicht darf, hieß es, es sei so definiert;)
Das Ganze gilt dann auch für das Vektorprodukt und Spatprodukt.
Danke im Voraus!
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 13:38 Do 27.09.2007 | Autor: | Blech |
> Hallo!
> Ich habe eine allgemeine Frage zum Skalarprodukt. Und zwar
> wollte ich wissen, ob es nur Definitionssache ist, wie das
> Skalarprodukt interpretiert wird oder gibt es einen Beweis
> dafür?
[mm]\vec x \cdot \vec y = |\vec x|\, |\vec y|\,\cos\measuredangle\left(\vec x, \vec y\right)[/mm], das folgt aus dem Kosinussatz.
Beweis hier.
> Es heißt ja, dass z.B. der Vektor a auf Vektor b projiziert
> wird. Warum kann man das einfach machen? Was ist Prokektion
> überhaupt.
Wenn Du Dir jetzt bei der Formel oben überlegst, was sie geometrisch bedeutet, dann ist sie etwas anders geklammert: [mm]\vec x \cdot \vec y = |\vec x|\, \left(|\vec y|\, \cos\measuredangle\left(\vec x, \vec y\right)\right)[/mm].
Jetzt fällst Du das Lot vom Ende von [mm]\vec y[/mm] auf [mm]\vec x[/mm].
Damit hast Du ein rechtwinkliges Dreieck. Der Kosinus ist dabei Ankathete (die Teilstrecke auf [mm]\vec x[/mm]) durch Hypotenuse (das ist durch Konstruktion [mm]\vec y[/mm]). [mm]cos(\mbox{Winkel})\cdot\mbox{Länge Hypotenuse}=\mbox{Länge Ankathete}[/mm].
Damit ist [mm]\vec x \cdot \vec y[/mm] gleich [mm]|\vec x|[/mm] mal der Länge der Projektion von [mm]\vec y[/mm] auf [mm]\vec x[/mm].
Die Projektion ist [mm]a \vec x[/mm], wobei a die reelle Zahl ist, für die [mm]|a\vec x-\vec y|[/mm] minimal wird.
> Man kann damit schön und gut Winkel und sowas
> berechnen, aber wo ist die Mathematik dahinter. Ist es
> wieder sowas wie die Definition "man darf nicht durch Null
> teilen"? Wenn man den Lehrer in der Schule fragte, warum
> man es nicht darf, hieß es, es sei so definiert;)
0 ist das neutrale Element der Addition. Das ist definiert (bzw. seine Existenz wird gefordert und man hat 0 als Symbol gewählt, man hätte auch § hernehmen können).
[mm]a + § = a\quad \forall a \in \IR[/mm]
Die Multiplikation soll distributiv sein:
[mm] (a+§)b = ab + §b = ab\quad \forall a,b \in \IR[/mm]
[mm]\Rightarrow §b = §[/mm]
Jetzt ist die Division die Umkehrabbildung der Multiplikation:
[mm]a\frac{1}{b}b = a\quad \forall a \in \IR,\ \forall b \in \IR\backslash \{0\}[/mm]
Nehmen wir an, das wäre auch mit 0 möglich:
[mm](a\frac{1}{§})§ = (a§)\frac{1}{§} = §\frac{1}{§} = a\quad \forall a \in \IR[/mm] ?! Was is es nun?
Das Problem ist der Informationsverlust bei der Multiplikation mit 0
Aus a*b können wir a rekonstruieren, aus a*0 nicht.
> Das Ganze gilt dann auch für das Vektorprodukt und
> Spatprodukt.
Schau einfach mal bei Wikipedia
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 15:19 Do 27.09.2007 | Autor: | Mato |
Danke sehr Blech!
|
|
|
|