www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Englisch
  Status Grammatik
  Status Lektüre
  Status Korrekturlesen
  Status Übersetzung
  Status Sonstiges (Englisch)

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Längen, Abstände, Winkel" - Skalarprodukt
Skalarprodukt < Längen+Abst.+Winkel < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Längen, Abstände, Winkel"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Skalarprodukt: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:43 Di 19.10.2010
Autor: Kueken

Hi!

Zwar ist der Inhalt aus einem Physik-Skript, aber da es hier um die Rechenmethoden geht, stelle ich mal das was hier steht in die Matherubrik.

Und zwar habe ich ein Verständnisproblem bei folgendem Text:

Mit Hilfe von Einheitsvektoren lässt sich das Skalarprodukt auch in Komponenten darstellen. (soweit klar) Mit [mm] \vec{a}=a_{1}\vec{e}_{1} [/mm] + [mm] a_{2}\vec{e}_{2} [/mm] + [mm] a_{3}\vec{e}_{3} [/mm] und der entsprechenden Zerlegung von [mm] \vec{b} [/mm] ergibt sich dann mit [mm] \vec{e}_{1}* \vec{e}_{1}=1, [/mm]
[mm] \vec{e}_{1}*\vec{e}_{2}= [/mm] 0 etc.  Genau das letzte versteh ich nicht. Ich dachte [mm] \vec{e} [/mm] soll ein Eiheitsvektor sein. Wieso gibt das eine 0 und das andere 1?

Hoffentlich weiß hier jemand Rat.
Vielen Dank schonmal
und Viele Grüße
Kerstin

        
Bezug
Skalarprodukt: Antwort
Status: (Antwort) fertig Status 
Datum: 23:52 Di 19.10.2010
Autor: Gonozal_IX

Hallo Küken,

beachte, dass einmal ein Einheitsvektor mit sich selbst skalar multipliziert wird und einmal mit einem anderen Vektor!

Ein Skalarprodukt eines Vektors mit sich selbst, ist (zumindest in der Physik) sein Betrag zum Quadrat, d.h. es gilt:

$ [mm] \vec{e}_{1}\cdot{} \vec{e}_{1}= |\vec{e_1}|^2 [/mm] = 1, $

Das zweite Skalarprodukt ist Null, da für Vektoren gilt:

[mm] \vec{x} [/mm] und [mm] \vec{y} [/mm] sind orthogonal, genau dann wenn [mm] $\vec{x}*\vec{y} [/mm] = 0$

Und offensichtlich sind zwei verschiedene Einheitsvektoren in diesem Fall orthogonal.

MFG,
Gono.

Bezug
                
Bezug
Skalarprodukt: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:56 Di 19.10.2010
Autor: Kueken

Ahh, ich verstehe. Die sind orthogonal weil sie die x,y und z Richtung im kartesischen Koordinatensystem darstellen oder?


Vielen Vielen Dank!

Bezug
                        
Bezug
Skalarprodukt: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 00:16 Mi 20.10.2010
Autor: Gonozal_IX

Huhu,

korrekt :-)

MFG,
Gono.

Bezug
                                
Bezug
Skalarprodukt: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 00:54 Mi 20.10.2010
Autor: Kueken

wunderbar :D

Danke nochmals!

Bezug
                
Bezug
Skalarprodukt: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 08:08 Mi 20.10.2010
Autor: fred97


> Hallo Küken,
>  
> beachte, dass einmal ein Einheitsvektor mit sich selbst
> skalar multipliziert wird und einmal mit einem anderen
> Vektor!
>  
> Ein Skalarprodukt eines Vektors mit sich selbst, ist
> (zumindest in der Physik) sein Betrag zum Quadrat,


Das ist nicht nur in der Physik so !

Ist V ein Vektorraum mit Skalarprodukt $<*|*>$, so wird in kanonischer Weise auf V eine Norm def. durch

               $||x||:= [mm] \wurzel{}$ [/mm]

FRED




> d.h. es
> gilt:
>  
> [mm]\vec{e}_{1}\cdot{} \vec{e}_{1}= |\vec{e_1}|^2 = 1,[/mm]
>  
> Das zweite Skalarprodukt ist Null, da für Vektoren gilt:
>  
> [mm]\vec{x}[/mm] und [mm]\vec{y}[/mm] sind orthogonal, genau dann wenn
> [mm]\vec{x}*\vec{y} = 0[/mm]
>  
> Und offensichtlich sind zwei verschiedene Einheitsvektoren
> in diesem Fall orthogonal.
>  
> MFG,
>  Gono.


Bezug
                        
Bezug
Skalarprodukt: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:51 Mi 20.10.2010
Autor: Gonozal_IX

Huhu,
  

> Ist V ein Vektorraum mit Skalarprodukt [mm]<*|*>[/mm], so wird in
> kanonischer Weise auf V eine Norm def. durch
>  
> [mm]||x||:= \wurzel{}[/mm]

das weiß ich, heisst dann allerdings Norm und nicht Betrag. Der Betrag ist ja bekanntlich nur eine bestimmte Norm und für beliebige Skalarprodukte gilt die Gleichung dann halt nur mit der induzierten Norm.... und da sie grundlegendere Fragen hat, und das Skalarprodut auch nicht als <x,x> geschrieben hat, wird sie nichtmal wissen, was eine induzierte Norm ist ;-)

MFG,
Gono.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Längen, Abstände, Winkel"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.englischraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]