www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Englisch
  Status Grammatik
  Status Lektüre
  Status Korrekturlesen
  Status Übersetzung
  Status Sonstiges (Englisch)

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Funktionalanalysis" - Sobolevräume mit 0-Rand
Sobolevräume mit 0-Rand < Funktionalanalysis < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Sobolevräume mit 0-Rand: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 16:43 So 08.05.2016
Autor: Laura22

Hi!

ich versuche mich gerade in Sobolevräume einzuarbeiten und versuche zu verstehen, wo  gerade der Unterschied zwischen [mm] H^1(\Omega) [/mm] und [mm] H^1_0(\Omega) [/mm] liegt, wobei [mm] \Omega [/mm] ein beschränktes Gebiet sei.

[mm] (H^1_0(\Omega) [/mm] wird bei uns definiert als Abschluss von [mm] C^\infty_0 [/mm] unter der [mm] W_{k,p}-Norm) [/mm]

Rein intuitiv würde ich sagen, dass  [mm] H^1_0(\Omega) \subset H^1(\Omega) [/mm] gilt. Gilt die umgekehrte Inklusion? Kennt jemand ein einfaches Bsp. für eine Funktion, die zwar in [mm] H^1(\Omega), [/mm] aber eben nicht in [mm] H^1_0(\Omega) [/mm] liegt?

Viele Grüße,
Laura

        
Bezug
Sobolevräume mit 0-Rand: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:20 Di 10.05.2016
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.englischraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]