Sowas wie der Tangentialraum < Sonstiges < Hochschule < Mathe < Vorhilfe
|
Aufgabe | Seien R eine kommutative Algebra mit Eins über einem Körper K und e ein Homomorphismus von R nach K mit dem Kern I. Zeigen Sie, dass dann
[mm] \{ d \in A^{\*}| d(ab)=d(a)e(b)+e(a)d(b) \ \forall a,b \} [/mm] isomorph ist zu [mm] (I/I^{2})^{\*} [/mm] |
Hallo!
Das ganze ist wohl eine Verallgemeinerung der Isomorphie zweier Darstellungen des Tangentialraumes. e wäre dabei einfach der Einsetzungshomomorphismus. Wie man das in dem Fall macht, ist mir auch bekannt. Der eine Homomorphismus sieht hier genau so aus, wie im speziellen, nämlich der von dieser Menge (nenn ich sie mal X) in den Dualraum. Man bildet einfach ein d [mm] \in [/mm] X auf auf die Abbildung, die das gleiche tut wie d, diese ist offenbar wohldefiniert. Wie aber stellt man das ganze andersherum an? Im Falle des Tangentialraumes würde man ein [mm] a\in [/mm] R jetzt ins Ideal I "verfrachten", indem man einfach [mm] const_{f(p)} [/mm] abzieht, sodass man dann ein Element des Dualraumes [mm] (I/I^{2})^{\*} [/mm] drauf anwenden kann.
Was aber soll ich hier abziehen, damit ich mit a-... im Kern von e lande?
Natürlich könnte man sich die Bijektivität sicherlich auch direkt überlegen, anstatt eine Inversion anzugeben und nachzurechnen, aber bei der Surjektivität kommt man dann ja auf das gleiche Problem. Und Injektivität seh ich jetzt auch so leicht nicht ein...
Sei [mm] d\in [/mm] X mit [mm] d(a+I^{2})=0 [/mm] für alle [mm] a\in [/mm] I. Warum sollte dann d schon überall verschwinden?
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 19:20 Fr 17.05.2013 | Autor: | matux |
$MATUXTEXT(ueberfaellige_frage)
|
|
|
|