Stammfunktion < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
 
 
   | 
  
 
  
   
    
     
	   | Status: | 
	   		           				(Frage) beantwortet    |    | Datum: |  16:37 Sa 12.02.2011 |    | Autor: |  rubi |   
	   
	  
 | Aufgabe |  |  Wie lautet die Stammfunktion von [mm] f(x)=\bruch{1}{x^2+4} [/mm] ?  |  
  
Hallo zusammen,
 
 
kann mir jemand einen Tipp geben, wie man die Stammfunktion findet ? 
 
 
Wenn der Nenner [mm] x^2+1 [/mm] lauten würde, wäre es F(x) = arctan(x).
 
 
Ich vermute, dass ich eine Substitution machen muss.
 
 
Danke für eure Tipps.
 
 
Viele Grüße
 
Rubi
 
 
Ich habe diese Frage in keinem anderen Forum gestellt.
 
 
      | 
     
    
   | 
  
 |          | 
 
 
   | 
  
 
  
   
    
     
	   | Status: | 
	   		           				(Antwort) fertig    |    | Datum: |  16:40 Sa 12.02.2011 |    | Autor: |  Teufel |   
	   
	   Hi!
 
 
Ja, das mit dem arctan ist schon die halbe Miete. Du kannst das jetzt so machen:
 
 
[mm] \frac{1}{4+x^2}=\frac{1}{4*(1+(\frac{x}{2})^2)} [/mm] Nun kannst du einfach [mm] z:=\frac{x}{2} [/mm] setzen.
 
 
      | 
     
    
   | 
  
 
 |   
  
   |