www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Englisch
  Status Grammatik
  Status Lektüre
  Status Korrekturlesen
  Status Übersetzung
  Status Sonstiges (Englisch)

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis-Sonstiges" - Stammfunktion
Stammfunktion < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stammfunktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:38 Sa 16.06.2012
Autor: Mathe-Lily

Aufgabe
Zeigen Sie, dass das folgende Vektorfeld F: A [mm] \to \IR^2 [/mm] rotationsfrei ist, d.h.: [mm] D_{i}F_{j} [/mm] = [mm] D_{j}F_{i} [/mm] ,  [mm] \forall [/mm] i,j
aber keine Stammfunktion in A hat.
A= {(x,y) [mm] \in \IR^{2} [/mm] | (x,y) [mm] \not= [/mm] (0,0)}

Hallo!
Mit dem ersten Teil habe ich keine Probleme.
Nur bei dem Teil mit der Stammfunktion.
Das heißt ja, dass keine Funktion G existieren soll mit G'=F.
Nur, wie zeigt man das?
Ich habe irgendwo im Internet gelesen, dass die Rotation [mm] \not= [/mm] 0 sein soll, aber 1. haben wir das (soweit ich das sehe) nicht im Skript stehen und 2. weiß ich gar nicht, wie man die Rotation genau ausrechnet?!
Oder hat es vielleicht mit dem Gradienten was zu tun? Denn die Definition der Stammfunktion ist ja in die Definiton des Gradientenfeldes eingesponnen:
Sei A [mm] \subset \IR^{n} [/mm] offen. Ein Vektorfeld F [mm] \in C^{0} (A,\IR^{n}) [/mm] heißt Gradientenfeld, wenn es eine Funktion [mm] \gamma \in C^{1}(A) [/mm] gibt mit grad [mm] \gamma [/mm] = F. Die Funktion [mm] \gamma [/mm] heißt Stammfunktion von F.

Kann mir hier jemand helfen?
Grüßle, Lily

        
Bezug
Stammfunktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:52 Sa 16.06.2012
Autor: Leopold_Gast

Leider hast du die Funktion vergessen.

Bezug
        
Bezug
Stammfunktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:27 So 17.06.2012
Autor: Mathe-Lily

ups! tut mir leid!
hier ist die Funktion:
F(x,y)= [mm] \vektor{\bruch{y}{x^{2}+y^{2}} +y \\ x- \bruch{x}{x^{2}+y^{2}}} [/mm]

Bezug
                
Bezug
Stammfunktion: Antwort
Status: (Antwort) fertig Status 
Datum: 10:49 So 17.06.2012
Autor: chrisno

Wenn Du die Stammfunktion suchst, dann gehst Du davon aus, dass [mm] $F(x,y)=\vektor{f_x(x,y) \\ f_y(x,y)}. [/mm]
Also musst Du die Stammfunktionen zu den beiden Komponenten bestimmen, einmal mit x und das andere mal mit y als Variablen.
Sobald Du diese hast, wirst Du feststellen, dass es keine Funktion gibt, die die gewünschten partiellen Ableitungen hat. Damit bist Du fertig.

Bezug
                        
Bezug
Stammfunktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:10 So 17.06.2012
Autor: Mathe-Lily

Erstmal Danke!
Da ich selbst beim integrieren nicht so weit kam, hab ich das mal im Internet machen lassen:
Die Stammfunktionen von [mm] f_{x}(x,y) [/mm] und [mm] f_{y}(x,y) [/mm] sind dann:
[mm] g_{x}(x,y)=tan^{-1} \bruch{x}{y} [/mm] + xy
[mm] g_{y}(x,y)=xy-tan^{-1} \bruch{x}{y} [/mm]


> Sobald Du diese hast, wirst Du feststellen, dass es keine
> Funktion gibt, die die gewünschten partiellen Ableitungen
> hat. Damit bist Du fertig.

Das verstehe ich nicht ganz: Die soll ich jetzt wieder ableiten und sehen, dass sie nicht das gleiche sind? Aber das wäre doch unlogisch! oder?


Bezug
                                
Bezug
Stammfunktion: Antwort
Status: (Antwort) fertig Status 
Datum: 22:18 So 17.06.2012
Autor: chrisno


> Erstmal Danke!
>  Da ich selbst beim integrieren nicht so weit kam, hab ich
> das mal im Internet machen lassen:
>  Die Stammfunktionen von [mm]f_{x}(x,y)[/mm] und [mm]f_{y}(x,y)[/mm] sind
> dann:
>  [mm]g_{x}(x,y)=tan^{-1} \bruch{x}{y}[/mm] + xy
>  [mm]g_{y}(x,y)=xy-tan^{-1} \bruch{x}{y}[/mm]
>  

Da fehlen noch die additiven Konstanten. Das können Funktionen sein, die von der jeweils anderen Variablen abhängig sind. Also [mm]g_{x}(x,y)=arctan \left(\bruch{x}{y}\right) + xy +h(x)[/mm].
Dein Fehler ist nun, von zwei Funktionen zu reden. Es muss eine Funktion sein. Leitest Du sie nach x ab, ergibt sich da eine Ergebnis, leitest Du sei nach y ab, das andere. Deine Aufgabe ist, zu zeigen, dass es eine solche Funktion nicht geben kann.



Nachtrag: Ich habe Deine Schreibweise beibehalten. Das tiefgestellte x oder y bedeutet eigentlich, dass es sich um die Ableitungsfunktion nach dieser Variablen handelt. Von daher wäre es besser, wenn einfach nur g(x,y) da stünde. Dann gilt [mm] $F(x,y)=\vektor{g_x(x,y) \\ g_y(x,y)}.$ [/mm] Warum Du dabei das g schreiben willst, wo ich doch ein f angeboten hatte, [mm] $F(x,y)=\vektor{f_x(x,y) \\ f_y(x,y)}$, [/mm] hast Du nicht kommentiert.

Bezug
                                
Bezug
Stammfunktion: Antwort
Status: (Antwort) fertig Status 
Datum: 08:40 Mo 18.06.2012
Autor: fred97


> Erstmal Danke!
>  Da ich selbst beim integrieren nicht so weit kam, hab ich
> das mal im Internet machen lassen:
>  Die Stammfunktionen von [mm]f_{x}(x,y)[/mm] und [mm]f_{y}(x,y)[/mm] sind
> dann:
>  [mm]g_{x}(x,y)=tan^{-1} \bruch{x}{y}[/mm] + xy
>  [mm]g_{y}(x,y)=xy-tan^{-1} \bruch{x}{y}[/mm]

Nein. das kann ja nicht sein. Wie sind denn diese Funktionen auf A definiert ? Z.B. im Punkt (1,0) ???


Ich würde das so machen: hätte F eine Stammfunktion auf A , so wäre das Wegintegral in A wegunabhängig

Ist also [mm] \gamma [/mm] ein geschlossener (stückweise stetig differenzierbarer ) Weg in A , so wäre

                [mm] \integral_{\gamma}^{}{F(x)*dx}=0. [/mm]

Ist das für [mm] \gamma(t)=(cos(t),sin(t), [/mm] t [mm] \in [/mm] [0,2 [mm] \pi] [/mm]  der Fall ?

FRED

>  
>
> > Sobald Du diese hast, wirst Du feststellen, dass es keine
> > Funktion gibt, die die gewünschten partiellen Ableitungen
> > hat. Damit bist Du fertig.
>
> Das verstehe ich nicht ganz: Die soll ich jetzt wieder
> ableiten und sehen, dass sie nicht das gleiche sind? Aber
> das wäre doch unlogisch! oder?
>  


Bezug
                                        
Bezug
Stammfunktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:25 So 24.06.2012
Autor: Mathe-Lily

ich danke euch für eure Hilfe! :-)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.englischraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]