Stammfunktion einer E-Funktion < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
|
Aufgabe | Ein Pharmaunternehmen produziert ein Medikament, das in Tablettenform verabreichtRückfrage wird. Der zeitliche Verlauf der Wirkstoffkonzentration im Blut eines Patienten kann in den ersten 24 Stunden nach Einnahme einer Tablette näherungsweise durch die Funktion f mit [mm] f(t)=8\cdot\ [/mm] t [mm] \cdot\ [/mm] e^(-0.25t) ;beschrieben werden. Dabei wird die Zeit t in Stunden seit der Einnahme (t=0) und die Wirkstoffkonzentration f(t) im Blut in Milligramm pro Liter (mg/l) gemessen.
Weise nach, dass die Funktion F mit [mm] F(t)=-32\cdot\ [/mm] (t+4)/cdot/ e(8-0.25t) eine Stammfunktion von f ist.
Bestimmen Sie die mittlere Wirkstoffkonzentration in den ersten 12 Stunden nach der Einnahme des Medikamentes. |
Also, wir haben das in der Schule gerechnet, und das hier gemacht:
F(t)= [mm] \integral\ [/mm] f(t) dt
= [mm] \integral\ [/mm] 8t [mm] \cdot\ [/mm] e^(-0.25t) dt
Das versteh ich auch noch...
Aber den nächsten Schritt verstehe ich leider nicht mehr:
= 8t [mm] \cdot\ (-4)\cdot\ [/mm] e^(0.25t) - [mm] \integral\ [/mm] 8 [mm] \cdot\ [/mm] (-4) [mm] \cdot\ [/mm] e^(0.25t) dt
= -32t [mm] \cdot\ [/mm] e^(0.25t) + [mm] 32\cdot\ [/mm] (-) [mm] \cdot\ [/mm] e^(0.25t)
= -32 (t+4) [mm] \cdot\ [/mm] e^(0.25t)
Wie kommt mein Lehrer da auf die -4???
Hat jemand eine Idee??
Freue mich über jeden kleinen Hinweis :)
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 15:34 So 14.12.2008 | Autor: | Ajnos |
Hallöchen,
ich versuche mich mal an einen "kleinen" Hinweis. Und picke dazu nur den Knackpunkt [mm] e^{-0.25t} [/mm] raus:
also [mm] e^{-0.25t}= e^{-\bruch{1}{4}t}
[/mm]
Um die Stammfunktion zu erhalten musst du "aufleiten", dazu holst du den Kehrwert von [mm] -\bruch{1}{4} [/mm] vor das e und hast somit
-4 [mm] e^{\bruch{1}{4}t}
[/mm]
Ist das verständlich?
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 15:46 So 14.12.2008 | Autor: | Dorlechen |
Aaaaah, super!! Da geht mir ein Licht auf...
Vielen vielen Dank!!!
|
|
|
|