Stammfunktionen < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
|
Aufgabe | Gib zur Funktion f jeweils eine Stammfunktion an.
Beispiel: [mm] f(x)=-2/3x^5 [/mm] + x³/2 - 5x -3 |
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
Hallo!
Haben gerade damit angefangen, die Stammfunktionen F von f zu bilden.
Leider war ich in der letzten Stunde nicht da und habe somit den Einstieg in das Thema verpasst.
Erstes Problem wäre da die Funtion [mm] f(x)=-2/3x^5 [/mm] + x³/2 - 5x -3
so weit komme ich:
F(x) = -1/9 [mm] x^6 [/mm] +...
da komme ich schon nicht weiter.
Wir haben zwar eine Tabelle im Mathematikbuch mit Grundlegenden Stammfunktionen, allerdings fehlen da einmal die Brüche mit Variable und die Wurzeln.
Zweite Aufgabe wäre
f(x) = (x+1)²
meine Überlegung war, das Binom aufzulösen und davon die Stammfunktion zu bilden. Ist das richtig?
Hoffe es findet sich jemand, der mir ganz kurz erklärt wie man in diesen Fällen die Stammfunktion bildet.
Liebe Grüße und vielen Dank im Voraus.
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 20:08 So 16.11.2008 | Autor: | Takeela |
Hallo.
In einen solchen Fall solltest du dir bewusst werden, dass du bei einer Integration immer das "Gegenteil" einer Ableitung machst. Das bedeutet, deine Stammfunktion F muss diffenziert die Funktion f ergeben.
Wenn du ein Polynom im Integral stehen hast, dann integrierst du jeden einzelnen Summanden.
Ich geb dir ein Beispiel:
[mm] f(x)=\bruch{1}{2}x^{2}+x
[/mm]
[mm] F(x)=\integral_{}^{}{f(x) dx}=\bruch{1}{2*3}x^{3}+\bruch{1}{2}x^{2}=\bruch{1}{6}x^{3}+\bruch{1}{2}x^{2}
[/mm]
Zu deinem zweiten Problem: Es bietet sich gut an, die Klammer auszuquadrieren und dann zu integrieren.
Ich hoffe, ich konnte dir helfen.
|
|
|
|
|
ich verstehe nicht wie du von deinem Beispiel auf die Stammfunktion kommst?
Oder ist das die Lösung meiner gestellten Aufgabe?
Wenn ja, wie kommst du darauf?
|
|
|
|
|
Hallo Beautiful.Lie,
> ich verstehe nicht wie du von deinem Beispiel auf die
> Stammfunktion kommst?
Hier wurde das Integral der Potenzfunkion verwendet.
>
> Oder ist das die Lösung meiner gestellten Aufgabe?
Keineswegs.
>
> Wenn ja, wie kommst du darauf?
Gruß
MathePower
|
|
|
|
|
Oh.. okay ich glaube ich habe mich nicht klar genug ausgedrückt, oder falsch weil ich einfach nicht weiss wozu wir das gerade hier machen.
also.. bei der gegebenen Beispielaufgabe, beid er ich die Lösung nciht nachvollziehen konnte, würde ich es so machen
f(x) = 1/2 x² + x
F(x) = 1/6 x³ + 1/2 x²
so machen wir das in der Schule.
Also mit Integralen is da noch nichts.
(ich habe gehört das wäre die Vorbereitung auf diese.)
|
|
|
|
|
Hi,
das ist kein Problem es ist nur eine andere Schreibweise. Ihr meint schon das gleiche.
Denk dran das
[mm] \frac{x^2}{2}=\frac{1}{2}*x^2
[/mm]
ist.
Und bei der zweiten würd' ich auch ausmultiplizieren.
Lg.
Mareike
|
|
|
|
|
Okay, danke, dann habe ich das schonmal verstanden mit der anderen Schreibweise, und dass die zweite aufgabe aufgelöst werden muss.
aber die erste Funktion, die ich aufgeschrieben habe, mit der komme ich immer noch nicht weiter...
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 18:40 Mo 17.11.2008 | Autor: | Infinit |
Diese Integration kannst Du summandenweise machen. Für den ersten Summanden hast Du es ja bereits ausgerechnet. Jetzt kommt der nächste Summand dran. Die Stammfunktion zu [mm] \bruch{x^3}{2} [/mm] ist [mm] \bruch{x^4}{8} [/mm]. Und so weiter, und so weiter.
Viel Spaß dabei,
Infinit
|
|
|
|
|
Okay, jetzt hat es letztendlich doch noch Klick gemacht!
Vielen lieben Dank an alle die mir geholfen haben.
|
|
|
|